Hypergraph Clustering Based on PageRank

A hypergraph is a useful combinatorial object to model ternary or higher-order relations among entities. Clustering hypergraphs is a fundamental task in network analysis. In this study, we develop two clustering algorithms based on personalized PageRank on hypergraphs. The first one is local in the sense that its goal is to find a tightly connected vertex set with a bounded volume including a specified vertex. The second one is global in the sense that its goal is to find a tightly connected vertex set. For both algorithms, we discuss theoretical guarantees on the conductance of the output vertex set. Also, we experimentally demonstrate that our clustering algorithms outperform existing methods in terms of both the solution quality and running time. To the best of our knowledge, ours are the first practical algorithms for hypergraphs with theoretical guarantees on the conductance of the output set.

[1]  Fan Chung,et al.  The heat kernel as the pagerank of a graph , 2007, Proceedings of the National Academy of Sciences.

[2]  智一 吉田,et al.  Efficient Graph-Based Image Segmentationを用いた圃場図自動作成手法の検討 , 2014 .

[3]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[4]  Y. Kōmura,et al.  Nonlinear semi-groups in Hilbert space , 1967 .

[5]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[6]  Noga Alon,et al.  Eigenvalues and expanders , 1986, Comb..

[7]  Cristian Sminchisescu,et al.  Efficient Hypergraph Clustering , 2012, AISTATS.

[8]  Luca Trevisan,et al.  Approximating the Expansion Profile and Almost Optimal Local Graph Clustering , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[9]  Miklós Simonovits,et al.  Random Walks in a Convex Body and an Improved Volume Algorithm , 1993, Random Struct. Algorithms.

[10]  Fan Chung Graham,et al.  Using PageRank to Locally Partition a Graph , 2007, Internet Math..

[11]  S. Sorin,et al.  Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time , 2009, 0905.1270.

[12]  Yoshida Yuichi Cheeger Inequalities for Submodular Transformations , 2019 .

[13]  Yin Tat Lee,et al.  Improved Cheeger's Inequality and Analysis of Local Graph Partitioning using Vertex Expansion and Expansion Profile , 2015, SIAM J. Comput..

[14]  Yuval Peres,et al.  Finding sparse cuts locally using evolving sets , 2008, STOC '09.

[15]  Miklós Simonovits,et al.  The mixing rate of Markov chains, an isoperimetric inequality, and computing the volume , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[16]  A. Boukricha Nonlinear Semigroups , 2004 .

[17]  Pietro Perona,et al.  Beyond pairwise clustering , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[18]  N. Alon,et al.  il , , lsoperimetric Inequalities for Graphs , and Superconcentrators , 1985 .

[19]  Bernhard Schölkopf,et al.  Learning with Hypergraphs: Clustering, Classification, and Embedding , 2006, NIPS.

[20]  Chenzi Zhang,et al.  Spectral Properties of Hypergraph Laplacian and Approximation Algorithms , 2016, J. ACM.

[21]  Ambedkar Dukkipati,et al.  Consistency of Spectral Partitioning of Uniform Hypergraphs under Planted Partition Model , 2014, NIPS.

[22]  Yuichi Yoshida,et al.  Nonlinear Laplacian for Digraphs and its Applications to Network Analysis , 2016, WSDM.

[23]  Olgica Milenkovic,et al.  Quadratic Decomposable Submodular Function Minimization , 2018, NeurIPS.

[24]  J. Rodri´guez On the Laplacian Eigenvalues and Metric Parameters of Hypergraphs , 2002 .

[25]  Yuichi Yoshida,et al.  Polynomial-Time Algorithms for Submodular Laplacian Systems , 2018, Theor. Comput. Sci..

[26]  Yuichi Yoshida,et al.  Cheeger Inequalities for Submodular Transformations , 2017, SODA.

[27]  Marianna Bolla,et al.  Spectra, Euclidean representations and clusterings of hypergraphs , 1993, Discret. Math..

[28]  Olgica Milenkovic,et al.  Submodular Hypergraphs: p-Laplacians, Cheeger Inequalities and Spectral Clustering , 2018, ICML.

[29]  I-Hsiang Wang,et al.  Community Detection in Hypergraphs: Optimal Statistical Limit and Efficient Algorithms , 2018, AISTATS.

[30]  Marcello Pelillo,et al.  A Game-Theoretic Approach to Hypergraph Clustering , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Yuichi Yoshida,et al.  Finding Cheeger Cuts in Hypergraphs via Heat Equation , 2018, Theor. Comput. Sci..

[32]  Shang-Hua Teng,et al.  A Local Clustering Algorithm for Massive Graphs and Its Application to Nearly Linear Time Graph Partitioning , 2008, SIAM J. Comput..

[33]  Bernhard Schölkopf,et al.  Beyond pairwise classification and clustering using hypergraphs , 2005, NIPS 2005.

[34]  Serge J. Belongie,et al.  Higher order learning with graphs , 2006, ICML.

[35]  Martine D. F. Schlag,et al.  Multi-level spectral hypergraph partitioning with arbitrary vertex sizes , 1996, Proceedings of International Conference on Computer Aided Design.

[36]  Shuicheng Yan,et al.  Robust Clustering as Ensembles of Affinity Relations , 2010, NIPS.

[37]  Jennifer Widom,et al.  Scaling personalized web search , 2003, WWW '03.

[38]  David F. Gleich,et al.  Heat kernel based community detection , 2014, KDD.