Collision detection in complex dynamic scenes using an LGMD-based visual neural network with feature enhancement

The lobula giant movement detector (LGMD) is an identified neuron in the locust brain that responds most strongly to the images of an approaching object such as a predator. Its computational model can cope with unpredictable environments without using specific object recognition algorithms. In this paper, an LGMD-based neural network is proposed with a new feature enhancement mechanism to enhance the expanded edges of colliding objects via grouped excitation for collision detection with complex backgrounds. The isolated excitation caused by background detail will be filtered out by the new mechanism. Offline tests demonstrated the advantages of the presented LGMD-based neural network in complex backgrounds. Real time robotics experiments using the LGMD-based neural network as the only sensory system showed that the system worked reliably in a wide range of conditions; in particular, the robot was able to navigate in arenas with structured surrounds and complex backgrounds

[1]  P. Simmons,et al.  Gliding behaviour elicited by lateral looming stimuli in flying locusts , 2004, Journal of Comparative Physiology A.

[2]  Hobart R. Everett,et al.  Sensors for Mobile Robots: Theory and Application , 1995 .

[3]  I. The,et al.  A DIRECTIONALLY SELECTIVE MOTION-DETECTING NEURONE IN THE BRAIN OF THE LOCUST : PHYSIOLOGICAL AND MORPHOLOGICAL CHARACTERIZATION , 2005 .

[4]  Hilary Buxton,et al.  Learning and understanding dynamic scene activity: a review , 2003, Image Vis. Comput..

[5]  Avinash C. Kak,et al.  Vision for Mobile Robot Navigation: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  C. Koch,et al.  Multiplicative computation in a visual neuron sensitive to looming , 2002, Nature.

[7]  E. R. Davies,et al.  Machine vision - theory, algorithms, practicalities , 2004 .

[8]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[9]  Paul F. M. J. Verschure,et al.  Collision avoidance using a model of the locust LGMD neuron , 2000, Robotics Auton. Syst..

[10]  Roberto Manduchi,et al.  Obstacle Detection and Terrain Classification for Autonomous Off-Road Navigation , 2005, Auton. Robots.

[11]  F. Rind,et al.  Neural network based on the input organization of an identified neuron signaling impending collision. , 1996, Journal of neurophysiology.

[12]  Holger G. Krapp,et al.  Multiplication and stimulus invariance in a looming-sensitive neuron , 2004, Journal of Physiology-Paris.

[13]  G. Schlotterer Response of the locust descending movement detector neuron to rapidly approaching and withdrawing visual stimuli , 1977 .

[14]  Heinrich H. Bülthoff,et al.  On robots and flies: Modeling the visual orientation behavior of flies , 1999, Robotics Auton. Syst..

[15]  Rind,et al.  The locust DCMD, a movement-detecting neurone tightly tuned to collision trajectories , 1997, The Journal of experimental biology.

[16]  P. Simmons,et al.  Seeing what is coming: building collision-sensitive neurones , 1999, Trends in Neurosciences.

[17]  Fumiya Iida,et al.  Biologically inspired visual odometer for navigation of a flying robot , 2003, Robotics Auton. Syst..

[18]  Barbara Webb,et al.  Reafferent or Redundant: Integration of Phonotaxis and Optomotor Behavior in Crickets and Robots , 2003, Adapt. Behav..

[19]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[20]  R D Santer,et al.  Retinally-generated saccadic suppression of a locust looming-detector neuron: investigations using a robot locust , 2004, Journal of The Royal Society Interface.

[21]  F. Claire Rind,et al.  IDENTIFICATION OF DIRECTIONALLY SELECTIVE MOTION-DETECTING NEURONES IN THE LOCUST LOBULA AND THEIR SYNAPTIC CONNECTIONS WITH AN IDENTIFIED DESCENDING NEURONE , 1990 .

[22]  Georg von Wichert Can robots learn to see , 1999 .

[23]  Anup Basu,et al.  Robot navigation using panoramic tracking , 2004, Pattern Recognit..

[24]  Nicolas Franceschini,et al.  Visual guidance based on optic flow: a biorobotic approach , 2004, Journal of Physiology-Paris.

[25]  Azriel Rosenfeld,et al.  From Image Analysis to Computer Vision: An Annotated Bibliography, 1955-1979 , 2001, Comput. Vis. Image Underst..

[26]  Clark F. Olson,et al.  Rover navigation using stereo ego-motion , 2003, Robotics Auton. Syst..

[27]  José-Enrique Simó-Ten,et al.  Using infrared sensors for distance measurement in mobile robots , 2002, Robotics Auton. Syst..

[28]  Paul F. M. J. Verschure,et al.  Locust’s Looming Detectors for Robot Sensors , 2003 .

[29]  Shigang Yue,et al.  A Collision Detection System for a Mobile Robot Inspired by the Locust Visual System , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[30]  Richard H Masland,et al.  Functional inhibition in direction-selective retinal ganglion cells: spatiotemporal extent and intralaminar interactions. , 2002, Journal of neurophysiology.

[31]  C. H. Fraser Rowell,et al.  The neuronal basis of a sensory analyser, the acridid movement detector system. IV. The preference for small field stimuli. , 1977, The Journal of experimental biology.

[32]  Paul F. M. J. Verschure,et al.  Using a Mobile Robot to Study Locust Collision Avoidance Responses , 1999, Int. J. Neural Syst..

[33]  M. O'Shea,et al.  NEURONAL BASIS OF A SENSORY ANALYSER , THE ACRID ID MOVEMENT DETECTOR SYSTEM , 2005 .

[34]  Christof Koch,et al.  A Silicon Implementation of the Fly's Optomotor Control System , 2000, Neural Computation.

[35]  M O'shea,et al.  The neuronal basis of a sensory analyser, the acridid movement detector system. II. response decrement, convergence, and the nature of the excitatory afferents to the fan-like dendrites of the LGMD. , 1976, The Journal of experimental biology.

[36]  P. Simmons,et al.  Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. , 1992, Journal of neurophysiology.

[37]  Martin David Adams Sensor Modelling, Design and Data Processing for Autonomous Navigation , 1999, World Scientific Series in Robotics and Intelligent Systems.

[38]  G Indiveri,et al.  Neuromorphic Vision Sensors , 2000, Science.

[39]  Michael O'Shea,et al.  The Anatomy of a Locust Visual Interneurone; the Descending Contralateral Movement Detector , 1974 .