Monolithic cut finite element–based approaches for fluid‐structure interaction

Cut finite element method (CutFEM) based approaches towards challenging fluid-structure interaction (FSI) are proposed. The different considered methods combine the advantages of competing novel Eulerian (fixed-grid) and established Arbitrary-Lagrangian-Eulerian (ALE) (moving mesh) finite element formulations for the fluid. The objective is to highlight the benefit of using cut finite element techniques for moving domain problems and to demonstrate their high potential with regards to simplified mesh generation, treatment of large structural motions in surrounding flows, capturing boundary layers, their ability to deal with topological changes in the fluid phase and their general straightforward extensibility to other coupled multiphysics problems. In addition to a pure fixed-grid FSI method, also advanced fluid domain decomposition techniques are considered rendering in highly flexible discretization methods for the FSI problem. All stabilized formulations include Nitsche-based weak coupling of the phases supported by the ghost penalty technique for the flow field. For the resulting systems, monolithic solution strategies are presented. Various 2D and 3D FSI-cases of different complexity validate the methods and demonstrate their capabilities and limitations in different situations.

[1]  Guillaume Houzeaux,et al.  A Chimera method based on a Dirichlet/Neumann(Robin) coupling for the Navier–Stokes equations , 2003 .

[2]  Ekkehard Ramm,et al.  Large deformation fluid structure interaction - advances in ALE methods and new fixed grid approaches , 2006 .

[3]  Alvise Sommariva,et al.  On the Use of Compressed Polyhedral Quadrature Formulas in Embedded Interface Methods , 2017, SIAM J. Sci. Comput..

[4]  P. Hansbo,et al.  A cut finite element method for a Stokes interface problem , 2012, 1205.5684.

[5]  Ted Belytschko,et al.  COMPUTER MODELS FOR SUBASSEMBLY SIMULATION , 1978 .

[6]  Ekkehard Ramm,et al.  On the geometric conservation law in transient flow calculations on deforming domains , 2006 .

[7]  Wolfgang A. Wall,et al.  3D fluid–structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach , 2010 .

[8]  Marek Behr,et al.  The Shear-Slip Mesh Update Method , 1999 .

[9]  Zhaosheng Yu A DLM/FD method for fluid/flexible-body interactions , 2005 .

[10]  Miguel A. Fernández,et al.  An unfitted Nitsche method for incompressible fluid–structure interaction using overlapping meshes , 2014 .

[11]  Kenneth E. Jansen,et al.  A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis , 2001 .

[12]  W. Wall,et al.  Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .

[13]  Ekkehard Ramm,et al.  Stabilized finite element formulation for incompressible flow on distorted meshes , 2009 .

[14]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[15]  Jonathan Joseph Hu,et al.  MueLu User?s Guide. , 2019 .

[16]  Benedikt Schott,et al.  A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier–Stokes equations , 2014 .

[17]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[18]  W. Wall,et al.  An extended residual-based variational multiscale method for two-phase flow including surface tension , 2011 .

[19]  Erik Burman,et al.  Numerical Approximation of Large Contrast Problems with the Unfitted Nitsche Method , 2011 .

[20]  Wolfgang A. Wall,et al.  Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods , 2013 .

[21]  Charbel Farhat,et al.  An ALE formulation of embedded boundary methods for tracking boundary layers in turbulent fluid-structure interaction problems , 2014, J. Comput. Phys..

[22]  Matthias Mayr,et al.  A Temporal Consistent Monolithic Approach to Fluid-Structure Interaction Enabling Single Field Predictors , 2015, SIAM J. Sci. Comput..

[23]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[24]  Peter Hansbo,et al.  Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem , 2014 .

[25]  Rolf Stenberg,et al.  Nitsche's method for general boundary conditions , 2009, Math. Comput..

[26]  Wolfgang A. Wall,et al.  Fluid–structure interaction for non-conforming interfaces based on a dual mortar formulation , 2011 .

[27]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[28]  R. Glowinski,et al.  A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations , 1994 .

[29]  Wulf G. Dettmer,et al.  An analysis of the time integration algorithms for the finite element solutions of incompressible Navier-Stokes equations based on a stabilised formulation , 2003 .

[30]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[31]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[32]  Benedikt Schott,et al.  A consistent approach for fluid‐structure‐contact interaction based on a porous flow model for rough surface contact , 2018, International Journal for Numerical Methods in Engineering.

[33]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[34]  Wolfgang A. Wall,et al.  An embedded Dirichlet formulation for 3D continua , 2010 .

[35]  Wolfgang A. Wall,et al.  An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: Application to embedded interface methods , 2014, J. Comput. Phys..

[36]  Patrick D. Anderson,et al.  A fluid-structure interaction method with solid-rigid contact for heart valve dynamics , 2006, J. Comput. Phys..

[37]  W. Wall,et al.  A face‐oriented stabilized Nitsche‐type extended variational multiscale method for incompressible two‐phase flow , 2015 .

[38]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[39]  Wolfgang A. Wall,et al.  A dual mortar approach for 3D finite deformation contact with consistent linearization , 2010 .

[40]  Ted Belytschko,et al.  Quasi-Eulerian Finite Element Formulation for Fluid-Structure Interaction , 1980 .

[41]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[42]  Miguel A. Fernández,et al.  Continuous Interior Penalty Finite Element Method for Oseen's Equations , 2006, SIAM J. Numer. Anal..

[43]  P. Hansbo,et al.  A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity , 2009 .

[44]  Arnold Reusken,et al.  An extended pressure finite element space for two-phase incompressible flows with surface tension , 2007, J. Comput. Phys..

[45]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[46]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[47]  Benedikt Schott,et al.  A monolithic approach to fluid‐structure interaction based on a hybrid Eulerian‐ALE fluid domain decomposition involving cut elements , 2018, International Journal for Numerical Methods in Engineering.

[48]  H. Roos,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations-Supplements , 2022, ArXiv.

[49]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[50]  Miguel Angel Fernández,et al.  Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit , 2011 .

[51]  W. Wall,et al.  A Nitsche cut finite element method for the Oseen problem with general Navier boundary conditions , 2017, 1706.05897.

[52]  Wing Kam Liu,et al.  Extended immersed boundary method using FEM and RKPM , 2004 .

[53]  Wolfgang A. Wall,et al.  An XFEM‐based embedding mesh technique for incompressible viscous flows , 2011 .

[54]  Benedikt Schott,et al.  A stabilized Nitsche‐type extended embedding mesh approach for 3D low‐ and high‐Reynolds‐number flows , 2016 .

[55]  Thomas J. R. Hughes,et al.  Finite element modeling of blood flow in arteries , 1998 .

[56]  Wolfgang A. Wall,et al.  A mixed/hybrid Dirichlet formulation for wall-bounded flow problems including turbulent flow , 2012 .

[57]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[58]  E. Ramm,et al.  Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows , 2007 .

[59]  Wolfgang A. Wall,et al.  Unified framework for the efficient solution of n-field coupled problems with monolithic schemes , 2015 .

[60]  S. Giuliani,et al.  Lagrangian and Eulerian Finite Element Techniques for Transient Fluid-Structure Interaction Problems , 1977 .

[61]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[62]  Oreste S. Bursi,et al.  The analysis of the Generalized-α method for non-linear dynamic problems , 2002 .

[63]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[64]  Peter Hansbo,et al.  Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions , 2016, ESAIM: Mathematical Modelling and Numerical Analysis.

[65]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[66]  W. Wall,et al.  Fluid–structure interaction approaches on fixed grids based on two different domain decomposition ideas , 2008 .

[67]  J. L. Steger,et al.  A chimera grid scheme , 2011 .

[68]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[69]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[70]  Christian Rey,et al.  The finite element method in solid mechanics , 2014 .

[71]  Miguel A. Fernández,et al.  Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures , 2016 .

[72]  Alexandre Ern,et al.  Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations , 2007, Math. Comput..

[73]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[74]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[75]  O. C. Zienkiewicz,et al.  Achievements and some unsolved problems of the finite element method , 2000 .

[76]  Michael A. Heroux,et al.  ROBUST ALGEBRAIC PRECONDITIONERS USING IFPACK 3.0. , 2005 .

[77]  Wolfgang A. Wall,et al.  Unified computational framework for the efficient solution of n-field coupled problems with monolithic schemes , 2016, 1605.01522.

[78]  Miguel Angel Fernández,et al.  Unfitted mesh formulations and splitting schemes for incompressible fluid/thin-walled structure interaction , 2016 .

[79]  Erich Rothe,et al.  Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben , 1930 .

[80]  Erik Burman,et al.  Stabilized finite element methods for the generalized Oseen problem , 2007 .

[81]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[82]  Benedikt Schott,et al.  A stabilized Nitsche cut finite element method for the Oseen problem , 2016, 1611.02895.

[83]  R. Codina,et al.  The fixed‐mesh ALE approach applied to solid mechanics and fluid–structure interaction problems , 2009 .

[84]  Alexei Lozinski,et al.  A fictitious domain approach for the Stokes problem based on the extended finite element method , 2013, 1303.6850.

[85]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[86]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[87]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[88]  S'ebastien Court,et al.  A fictitious domain finite element method for simulations of fluid-structure interactions: The Navier-Stokes equations coupled with a moving solid , 2015, 1502.03953.

[89]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[90]  André Massing,et al.  A Stabilized Nitsche Fictitious Domain Method for the Stokes Problem , 2012, J. Sci. Comput..

[91]  F. Baaijens A fictitious domain/mortar element method for fluid-structure interaction , 2001 .