Simplified Lower Bounds on the Multiparty Communication Complexity of Disjointness

We show that the deterministic number-on-forehead communication complexity of set disjointness for k parties on a universe of size n is Ω(n/ 4k). This gives the first lower bound that is linear in n, nearly matching Grolmusz's upper bound of O(log2(n) + k2n/2k). We also simplify the proof of Sherstov's [EQUATION] lower bound for the randomized communication complexity of set disjointness.

[1]  Alexander A. Sherstov SeparatingAC0 from Depth-2 Majority Circuits , 2009, SIAM J. Comput..

[2]  Emanuele Viola,et al.  Pseudorandom bits for constant depth circuits with few arbitrary symmetric gates , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[3]  Noam Nisan,et al.  The communication requirements of efficient allocations and supporting prices , 2006, J. Econ. Theory.

[4]  Noam Nisan,et al.  The Communication Complexity of Approximate Set Packing and Covering , 2002, ICALP.

[5]  Alexander A. Sherstov Communication Lower Bounds Using Directional Derivatives , 2014, JACM.

[6]  E. Cheney Introduction to approximation theory , 1966 .

[7]  Elliott Ward Cheney,et al.  A Comparison of Uniform Approximations on an Interval and a Finite Subset Thereof , 1966 .

[8]  Alexander A. Razborov,et al.  On the Distributional Complexity of Disjointness , 1992, Theor. Comput. Sci..

[9]  Bala Kalyanasundaram,et al.  The Probabilistic Communication Complexity of Set Intersection , 1992, SIAM J. Discret. Math..

[10]  Noam Nisan,et al.  Rounds in Communication Complexity Revisited , 1993, SIAM J. Comput..

[11]  Thomas P. Hayes,et al.  The Cost of the Missing Bit: Communication Complexity with Help , 1998, STOC '98.

[12]  Avi Wigderson,et al.  Algebrization: A New Barrier in Complexity Theory , 2009, TOCT.

[13]  Arkadev Chattopadhyay Discrepancy and the Power of Bottom Fan-in in Depth-three Circuits , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[14]  Ziv Bar-Yossef,et al.  An information statistics approach to data stream and communication complexity , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[15]  Emanuele Viola,et al.  Norms, XOR Lemmas, and Lower Bounds for Polynomials and Protocols , 2008, Theory Comput..

[16]  Christos H. Papadimitriou,et al.  On the Hardness of Being Truthful , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[17]  Fan Chung Graham,et al.  Communication Complexity and Quasi Randomness , 1993, SIAM J. Discret. Math..

[18]  Emanuele Viola Pseudorandom Bits for Constant-Depth Circuits with Few Arbitrary Symmetric Gates , 2007, SIAM J. Comput..

[19]  Karl Zeller,et al.  Schwankung von Polynomen zwischen Gitterpunkten , 1964 .

[20]  Vincent Conitzer,et al.  Communication complexity as a lower bound for learning in games , 2004, ICML.

[21]  Toniann Pitassi,et al.  The story of set disjointness , 2010, SIGA.

[22]  Alexander A. Sherstov The multiparty communication complexity of set disjointness , 2012, STOC '12.

[23]  Vince Grolmusz,et al.  The BNS Lower Bound for Multi-Party Protocols in Nearly Optimal , 1994, Inf. Comput..

[24]  Alexander A. Sherstov Separating AC0 from depth-2 majority circuits , 2007, STOC '07.

[25]  Arkadev Chattopadhyay Circuits, communication and polynomials , 2009 .

[26]  Troy Lee,et al.  Disjointness is Hard in the Multiparty Number-on-the-Forehead Model , 2007, 2008 23rd Annual IEEE Conference on Computational Complexity.

[27]  Alexander A. Razborov,et al.  n^Omega(log n) Lower Bounds on the Size of Depth-3 Threshold Circuits with AND Gates at the Bottom , 1993, Information Processing Letters.

[28]  Alexander A. Sherstov The Multiparty Communication Complexity of Set Disjointness , 2016, SIAM J. Comput..

[29]  Noam Nisan,et al.  Multiparty Protocols, Pseudorandom Generators for Logspace, and Time-Space Trade-Offs , 1992, J. Comput. Syst. Sci..

[30]  A. Chattopadhyay Discrepancy and the Power of Bottom Fan-in in Depth-three Circuits , 2007, FOCS 2007.

[31]  Paul Beame,et al.  Multiparty Communication Complexity and Threshold Circuit Size of sfAC0 , 2012, SIAM J. Comput..

[32]  Denis Thérien,et al.  Computational complexity questions related to finite monoids and semigroups , 2003 .

[33]  Noam Nisan,et al.  Rounds in communication complexity revisited , 1991, STOC '91.

[34]  Alexander A. Sherstov The Pattern Matrix Method , 2009, SIAM J. Comput..

[35]  Paul Beame,et al.  MULTIPARTY COMMUNICATION COMPLEXITY AND THRESHOLD CIRCUIT SIZE OF AC0∗ , 2010 .

[36]  Ran Raz,et al.  The BNS-Chung criterion for multi-party communication complexity , 2000, computational complexity.

[37]  Noam Nisan,et al.  On the degree of boolean functions as real polynomials , 1992, STOC '92.

[38]  Avi Wigderson,et al.  A Strong Direct Product Theorem for Corruption and the Multiparty Communication Complexity of Disjointness , 2006, computational complexity.

[39]  E. Kushilevitz,et al.  Communication Complexity: Basics , 1996 .

[40]  Noam Nisan,et al.  Limitations of VCG-based mechanisms , 2007, STOC '07.

[41]  Avi Wigdersony N (log N) Lower Bounds on the Size of Depth 3 Threshold Circuits with and Gates at the Bottom , 1993 .

[42]  Johan Håstad,et al.  On the power of small-depth threshold circuits , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[43]  Arkadev Chattopadhyay,et al.  Multiparty Communication Complexity of Disjointness , 2008, Electron. Colloquium Comput. Complex..

[44]  Richard J. Lipton,et al.  Multi-party protocols , 1983, STOC.

[45]  Mark Braverman,et al.  An information complexity approach to extended formulations , 2013, STOC '13.

[46]  Toniann Pitassi,et al.  Lower Bounds for Lovász-Schrijver Systems and Beyond Follow from Multiparty Communication Complexity , 2005, ICALP.

[47]  Yishay Mansour,et al.  The communication complexity of uncoupled nash equilibrium procedures , 2007, STOC '07.