Direct Detection of a Coronal Mass Ejection-Associated Shock in Large Angle and Spectrometric Coronagraph Experiment White-Light Images

The Large Angle and Spectrometric Coronagraph Experiment (LASCO) C2 and C3 coronagraphs recorded a unique coronal mass ejection (CME) on 1999 April 2. The event did not have the typical three-part CME structure and involved a small-filament eruption without any visible overlying streamer ejecta. The event exhibited an unusually clear signature of a wave propagating at the CME flanks. The speed and density of the CME front and flanks were consistent with the existence of a shock. To better establish the nature of the white-light wave signature, we employed a simple MHD simulation using the LASCO measurements as constraints. Both the measurements and the simulation strongly suggest that the white-light feature is the density enhancement from a fast-mode MHD shock. In addition, the LASCO images clearly show streamers being deflected when the shock impinges on them. It is the first direct imaging of this interaction.

[1]  Jun Yu Li,et al.  Ultraviolet Spectroscopy of Narrow Coronal Mass Ejections , 2003, astro-ph/0301649.

[2]  R. MacQueen,et al.  Narrow Coronal Mass Ejections , 2001 .

[3]  A. Vourlidas,et al.  Deriving the Electron Density of the Solar Corona from the Inversion of Total Brightness Measurements , 2001 .

[4]  Simon P. Plunkett,et al.  Evolution of Global-Scale Coronal Magnetic Field due to Magnetic Reconnection: The Formation of the Observed Blob Motion in the Coronal Streamer Belt , 2000 .

[5]  Russell A. Howard,et al.  Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998 , 2000 .

[6]  L. Burlaga,et al.  Radio‐rich solar eruptive events , 2000 .

[7]  A. Vourlidas,et al.  Large-Angle Spectrometric Coronagraph Measurements of the Energetics of Coronal Mass Ejections , 2000 .

[8]  N. Sheeley,et al.  Detection of coronal mass ejection associated shock waves in the outer corona , 2000 .

[9]  Andreas Klassen,et al.  Catalogue of the 1997 SOHO–EIT coronal transient waves and associated type II radio burst spectra , 2000 .

[10]  L. Burlaga,et al.  MHD description of the dynamical relationships between a flux rope, streamer, coronal mass ejection, and magnetic cloud : An analysis of the January 1997 Sun-Earth connection event , 1999 .

[11]  Inc.,et al.  The relationship of coronal mass ejections to streamers , 1999, astro-ph/9906207.

[12]  O. C. St. Cyr,et al.  A comparison of ground-based and spacecraft observations of coronal mass ejections from 1980–1989 , 1999 .

[13]  Russell A. Howard,et al.  On the origin of solar metric type II bursts , 1999 .

[14]  Jay A. Bookbinder,et al.  The transition region and coronal explorer , 1998 .

[15]  S. Suess,et al.  Global model of the corona with heat and momentum addition , 1998 .

[16]  S. Suess,et al.  Volumetric heating in coronal streamers , 1996 .

[17]  S. Wu,et al.  Numerical simulation of slow shocks in the solar wind , 1996 .

[18]  W. Neupert,et al.  EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission , 1995 .

[19]  O. C. St. Cyr,et al.  Speeds of coronal mass ejections: SMM observations from 1980 and 1984‐1989 , 1994 .

[20]  P. Lamy,et al.  The Large Angle Spectroscopic Coronagraph (LASCO): Visible light coronal imaging and spectroscopy , 1992 .

[21]  S. Tsuneta,et al.  The Soft X-ray Telescope for the SOLAR-A mission , 1991 .

[22]  A. Hundhausen,et al.  Coronal mass ejection shock fronts containing the two types of intermediate shocks , 1990 .

[23]  A. Hundhausen,et al.  Concave‐outward slow shocks in coronal mass ejections , 1990 .

[24]  B. Low,et al.  Do slow shocks precede some coronal mass ejections , 1987 .

[25]  J. F. Wang,et al.  Numerical tests of a modified full implicit continuous Eulerian (FICE) scheme with projected normal characteristic boundary conditions for MHD flows , 1987 .

[26]  A. Hundhausen,et al.  The coronal mass ejection of July 6, 1980: A candidate for interpretation as a coronal shock wave , 1987 .

[27]  R. MacQueen,et al.  Density distribution in looplike coronal transients: A comparison of observations and a theoretical model , 1984 .

[28]  R. MacQueen,et al.  The kinematics of solar inner coronal transients , 1983 .

[29]  M. Dryer,et al.  Solar radio bursts of spectral type II, coronal shocks, and optical coronal transients , 1981 .

[30]  E. Hildner,et al.  The High Altitude Observatory Coronagraph/Polarimeter on the Solar Maximum Mission , 1980 .

[31]  S. Wu,et al.  Magnetohydrodynamic models of coronal transients in the meridional plane. I - The effect of the magnetic field , 1978 .

[32]  A. Poland,et al.  A study of the background corona near solar minimum , 1977 .

[33]  R. MacQueen,et al.  Mass ejections from the Sun: A view from Skylab , 1974 .

[34]  A. Vourlidas,et al.  Development of Coronal Mass Ejections: Radio Shock Signatures , 2000, The Astrophysical journal.

[35]  Bruce T. Tsurutani,et al.  Collisionless shocks in the heliosphere: reviews of current research , 1985 .

[36]  H. Rosenbauer,et al.  Synoptic observations of coronal transients and their interplanetary consequences , 1984 .

[37]  D. J. Michels,et al.  Coronal transients near sunspot maximum , 1981 .

[38]  A. Jefrey,et al.  Non-Linear Wave Propagation , 1964 .