Advances in Evolutionary Multi-objective Optimization

Started during 1993-95 with three different algorithms, evolutionary multi-objective optimization (EMO) has come a long way in a quick time to establish itself as a useful field of research and application. Till to date, there exist numerous textbooks and edited books, commercial softwares dedicated to EMO algorithms, freely downloadable codes in most-used computer languages, a biannual conference series (called EMO conference series) running successfully since 2001, and special sessions and workshops held in almost all major evolutionary computing conferences. In this paper, we discuss briefly the principles of EMO through an illustration of one specific algorithm.Thereafter, we focus on mentioning a few recent research and application developments of EMO. Specifically, we discuss EMO's use with multiple criterion decision making (MCDM) procedures and EMO's applicability in handling of a large number of objectives. Besides, the concept of multi-objectivization and innovization --- which are practically motivated, is discussed next. A few other key advancements are also highlighted. The development and application of EMO to multi-objective optimization problems and their continued extensions to solve other related problems have elevated the EMO research to a level which may now undoubtedly be termed as an active field of research with a wide range of theoretical and practical research and application opportunities. EMO concepts are ready to be applied to search based software engineering (SBSE) problems.

[1]  Spiros Mancoridis,et al.  Automatic clustering of software systems using a genetic algorithm , 1999, STEP '99. Proceedings Ninth International Workshop Software Technology and Engineering Practice.

[2]  Lothar Thiele,et al.  Multiobjective genetic programming: reducing bloat using SPEA2 , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[3]  Kyriakos C. Giannakoglou,et al.  Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence , 2002 .

[4]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[5]  Yuanyuan Zhang,et al.  The multi-objective next release problem , 2007, GECCO '07.

[6]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[7]  Saúl Zapotecas Martínez,et al.  A Proposal to Hybridize Multi-Objective Evolutionary Algorithms with Non-gradient Mathematical Programming Techniques , 2008, PPSN.

[8]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[9]  Per Kristian Lehre,et al.  On the effect of populations in evolutionary multi-objective optimization , 2006, GECCO.

[10]  Mark Harman,et al.  A multiple hill climbing approach to software module clustering , 2003, International Conference on Software Maintenance, 2003. ICSM 2003. Proceedings..

[11]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[12]  Kalyanmoy Deb,et al.  Reliability-Based Optimization Using Evolutionary Algorithms , 2009, IEEE Transactions on Evolutionary Computation.

[13]  Eckart Zitzler,et al.  Handling Uncertainty in Indicator-Based Multiobjective Optimization , 2006 .

[14]  Marco Laumanns,et al.  Running time analysis of a multi-objective evolutionary algorithm on a simple discrete optimization problem , 2002 .

[15]  Emden R. Gansner,et al.  Bunch: a clustering tool for the recovery and maintenance of software system structures , 1999, Proceedings IEEE International Conference on Software Maintenance - 1999 (ICSM'99). 'Software Maintenance for Business Change' (Cat. No.99CB36360).

[16]  Kalyanmoy Deb,et al.  Bayesian Reliability Analysis under Incomplete Information Using Evolutionary Algorithms , 2010, SEAL.

[17]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[18]  Filomena Ferrucci,et al.  How Multi-Objective Genetic Programming Is Effective for Software Development Effort Estimation? , 2011, SSBSE.

[19]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[20]  Frank Neumann,et al.  Minimum spanning trees made easier via multi-objective optimization , 2005, GECCO '05.

[21]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[22]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[23]  Kalyanmoy Deb,et al.  Automated discovery of vital knowledge from Pareto-optimal solutions: First results from engineering design , 2010, IEEE Congress on Evolutionary Computation.

[24]  Dirk Thierens,et al.  The balance between proximity and diversity in multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[25]  Kalyanmoy Deb,et al.  Light beam search based multi-objective optimization using evolutionary algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[26]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[27]  Kalyanmoy Deb,et al.  Trading on infeasibility by exploiting constraint’s criticality through multi-objectivization: A system design perspective , 2007, 2007 IEEE Congress on Evolutionary Computation.

[28]  Rajeev Kumar,et al.  Analysis of a Multiobjective Evolutionary Algorithm on the 0-1 knapsack problem , 2006, Theor. Comput. Sci..

[29]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[30]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[31]  Aravind Srinivasan,et al.  Innovization: innovating design principles through optimization , 2006, GECCO.

[32]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[33]  Kalyanmoy Deb,et al.  A Hybrid Multi-objective Evolutionary Approach to Engineering Shape Design , 2001, EMO.

[34]  Kalyanmoy Deb,et al.  A Local Search Based Evolutionary Multi-objective Optimization Approach for Fast and Accurate Convergence , 2008, PPSN.

[35]  Gordon Fraser,et al.  On Parameter Tuning in Search Based Software Engineering , 2011, SSBSE.

[36]  Michael Emmerich,et al.  Metamodel Assisted Multiobjective Optimisation Strategies and their Application in Airfoil Design , 2004 .

[37]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[38]  Michael T. M. Emmerich,et al.  Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels , 2006, IEEE Transactions on Evolutionary Computation.

[39]  Kalyanmoy Deb,et al.  Interactive evolutionary multi-objective optimization and decision-making using reference direction method , 2007, GECCO '07.

[40]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[41]  Kalyanmoy Deb,et al.  On finding multiple Pareto-optimal solutions using classical and evolutionary generating methods , 2007, Eur. J. Oper. Res..

[42]  Carlos A. Coello Coello,et al.  A Micro-Genetic Algorithm for Multiobjective Optimization , 2001, EMO.

[43]  Oliver Giel,et al.  Expected runtimes of a simple multi-objective evolutionary algorithm , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[44]  Thomas A. Cruse,et al.  Reliability-Based Mechanical Design , 1997 .

[45]  B. Babu,et al.  Differential evolution for multi-objective optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[46]  Patrick R. McMullen,et al.  An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives , 2001, Artif. Intell. Eng..

[47]  Kalyanmoy Deb,et al.  Multiobjective Problem Solving from Nature: From Concepts to Applications (Natural Computing Series) , 2008 .

[48]  Kalyanmoy Deb,et al.  Finding a preferred diverse set of Pareto-optimal solutions for a limited number of function calls , 2012, 2012 IEEE Congress on Evolutionary Computation.

[49]  Kalyanmoy Deb,et al.  Computationally effective search and optimization procedure using coarse to fine approximations , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[50]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[51]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[52]  Kalyanmoy Deb,et al.  An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions , 2010, IEEE Transactions on Evolutionary Computation.

[53]  Kalyanmoy Deb,et al.  A fast and accurate solution of constrained optimization problems using a hybrid bi-objective and penalty function approach , 2010, IEEE Congress on Evolutionary Computation.

[54]  C. Coello TREATING CONSTRAINTS AS OBJECTIVES FOR SINGLE-OBJECTIVE EVOLUTIONARY OPTIMIZATION , 2000 .

[55]  Günther Ruhe,et al.  Bi-objective release planning for evolving software systems , 2007, ESEC-FSE '07.

[56]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO '06.

[57]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[58]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[59]  Mark Fleischer,et al.  The measure of pareto optima: Applications to multi-objective metaheuristics , 2003 .

[60]  Kalyanmoy Deb,et al.  Multiobjective Problem Solving from Nature: From Concepts to Applications , 2008, Natural Computing Series.

[61]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[62]  Kalyanmoy Deb,et al.  Finding Knees in Multi-objective Optimization , 2004, PPSN.

[63]  Spiros Mancoridis,et al.  Using Interconnection Style Rules to Infer Software Architecture Relations , 2004, GECCO.

[64]  K. Miettinen,et al.  Incorporating preference information in interactive reference point methods for multiobjective optimization , 2009 .

[65]  Kalyanmoy Deb,et al.  Multiobjective optimization , 1997 .

[66]  Kalyanmoy Deb,et al.  Dynamic Multi-objective Optimization and Decision-Making Using Modified NSGA-II: A Case Study on Hydro-thermal Power Scheduling , 2007, EMO.

[67]  Xiaoping Du,et al.  Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design , 2004, DAC 2002.

[68]  Kalyanmoy Deb,et al.  Finding trade-off solutions close to KKT points using evolutionary multi-objective optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[69]  Kalyanmoy Deb,et al.  An Evolutionary Multi-objective Adaptive Meta-modeling Procedure Using Artificial Neural Networks , 2007, Evolutionary Computation in Dynamic and Uncertain Environments.

[70]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[71]  Carlos M. Fonseca,et al.  Exploring the Performance of Stochastic Multiobjective Optimisers with the Second-Order Attainment Function , 2005, EMO.

[72]  Edwin D. de Jong,et al.  Reducing bloat and promoting diversity using multi-objective methods , 2001 .

[73]  Pekka Korhonen,et al.  A Visual Interactive Method for Solving the Multiple-Criteria Problem , 1986 .

[74]  Giuliano Antoniol,et al.  Software project planning for robustness and completion time in the presence of uncertainty using multi objective search based software engineering , 2009, GECCO.

[75]  S. Ranji Ranjithan,et al.  The Neighborhood Constraint Method: A Genetic Algorithm-Based Multiobjective Optimization Technique , 1997, ICGA.

[76]  K. Deb,et al.  Understanding knee points in bicriteria problems and their implications as preferred solution principles , 2011 .

[77]  Kalyanmoy Deb,et al.  Multi-Speed Gearbox Design Using Multi-Objective Evolutionary Algorithms , 2003 .

[78]  Kaisa Miettinen,et al.  A Preference Based Interactive Evolutionary Algorithm for Multi-objective Optimization: PIE , 2011, EMO.

[79]  Kalyanmoy Deb,et al.  Temporal Evolution of Design Principles in Engineering Systems: Analogies with Human Evolution , 2012, PPSN.

[80]  Xin Yao,et al.  Performance Scaling of Multi-objective Evolutionary Algorithms , 2003, EMO.

[81]  Marco Laumanns,et al.  Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions , 2004, IEEE Transactions on Evolutionary Computation.

[82]  Joshua D. Knowles,et al.  An Evolutionary Approach to Multiobjective Clustering , 2007, IEEE Transactions on Evolutionary Computation.

[83]  Kalyanmoy Deb,et al.  An evolutionary algorithm based approach to design optimization using evidence theory , 2013 .

[84]  Marc Gravel,et al.  Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic , 2002, Eur. J. Oper. Res..

[85]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[86]  Kalyanmoy Deb,et al.  Towards automating the discovery of certain innovative design principles through a clustering-based optimization technique , 2011 .

[87]  Kalyanmoy Deb,et al.  Introducing Robustness in Multi-Objective Optimization , 2006, Evolutionary Computation.

[88]  Huidong Jin,et al.  Adaptive diversity maintenance and convergence guarantee in multiobjective evolutionary algorithms , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[89]  David W. Corne,et al.  Quantifying the Effects of Objective Space Dimension in Evolutionary Multiobjective Optimization , 2007, EMO.

[90]  Kalyanmoy Deb,et al.  Reference point-based evolutionary multi-objective optimization for industrial systems simulation , 2012, Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC).

[91]  Kazuhiro Nakahashi,et al.  Aerodynamic Shape Optimization of Supersonic Wings by Adaptive Range Multiobjective Genetic Algorithms , 2001, EMO.

[92]  Andy J. Keane,et al.  Metamodeling Techniques For Evolutionary Optimization of Computationally Expensive Problems: Promises and Limitations , 1999, GECCO.

[93]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[94]  Gary B. Lamont,et al.  Applications Of Multi-Objective Evolutionary Algorithms , 2004 .