A new particle filtering approach to estimate stochastic volatility models with Markov-switching

A simple method is proposed to estimate stochastic volatility models with Markov-switching. It relies on a nested structure of filters (a Hamilton filter and several particle filters) to approximate unobserved regimes and state variables, respectively. Smooth resampling is used to keep the computational complexity constant over time and to implement a standard likelihood-based inference on parameters. A bootstrap and an adapted version of the filter are described and their performance are assessed using simulation experiments. The volatility of US and French markets is characterized over the last decade using a three-regime stochastic volatility model extended to include a leverage effect.

[1]  Drew D. Creal A Survey of Sequential Monte Carlo Methods for Economics and Finance , 2012 .

[2]  M. Pitt Smooth Particle Filters for Likelihood Evaluation and Maximisation , 2002 .

[3]  Nicholas G. Polson,et al.  MCMC Methods for Financial Econometrics , 2002 .

[4]  Francesco Bianchi,et al.  Regime Switches, Agents’ Beliefs, and Post-World War II U.S. Macroeconomic Dynamics , 2012 .

[5]  Nicolas Chopin,et al.  SMC2: an efficient algorithm for sequential analysis of state space models , 2011, 1101.1528.

[6]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[7]  Chang‐Jin Kim,et al.  Dynamic linear models with Markov-switching , 1994 .

[8]  Roberto Casarin,et al.  Bayesian Inference on Dynamic Models with Latent Factors , 2007, SSRN Electronic Journal.

[9]  Jaeho Kim Efficient Bayesian Inference in Non-linear Switching State Space Models Using Particle Gibbs Sampling Approaches , 2015 .

[10]  Yasuhiro Omori,et al.  Leverage, heavy-tails and correlated jumps in stochastic volatility models , 2007, Comput. Stat. Data Anal..

[11]  Jun Cai A Markov Model of Switching-Regime ARCH , 1994 .

[12]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[13]  M. Pitt,et al.  Particle filters for continuous likelihood evaluation and maximisation , 2011 .

[14]  Michael J. Dueker,et al.  Stochastic Capital Depreciation and the Co-movement of Hours and Productivity , 2002 .

[15]  Christopher G. Lamoureux,et al.  Persistence in Variance, Structural Change, and the GARCH Model , 1990 .

[16]  T. Bollerslev,et al.  A Discrete-Time Model for Daily S&P500 Returns and Realized Variations: Jumps and Leverage Effects , 2007 .

[17]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[18]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[19]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[20]  Julien Albertini,et al.  The importance of time-varying parameters in new Keynesian models with zero lower bound , 2016 .

[21]  Silvano Bordignon,et al.  Comparing stochastic volatility models through Monte Carlo simulations , 2006, Comput. Stat. Data Anal..

[22]  A. Gallant,et al.  Which Moments to Match? , 1995, Econometric Theory.

[23]  Junior Maih,et al.  Sigma Point Filters for Dynamic Nonlinear Regime Switching Models , 2015 .

[24]  Chang‐Jin Kim,et al.  State-Space Models with Regime-Switching: Classical and Gibbs Sampling Approaches with Applications , 1999 .

[25]  Jun S. Liu,et al.  Mixture Kalman filters , 2000 .

[26]  A. Gallant,et al.  Estimation of Stochastic Volatility Models with Diagnostics , 1995 .

[27]  Simon J. Godsill,et al.  An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.

[28]  Andrew T. Foerster,et al.  Perturbation methods for Markov‐switching dynamic stochastic general equilibrium models , 2016 .

[29]  H. Mumtaz,et al.  Evolving Macroeconomic Dynamics in a Small Open Economy: An Estimated Markov Switching DSGE Model for the UK , 2011 .

[30]  P. Fearnhead,et al.  On‐line inference for hidden Markov models via particle filters , 2003 .

[31]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[32]  Carlos M. Carvalho,et al.  Simulation-based sequential analysis of Markov switching stochastic volatility models , 2007, Comput. Stat. Data Anal..

[33]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[34]  James D. Hamilton,et al.  Autoregressive conditional heteroskedasticity and changes in regime , 1994 .

[35]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[36]  J. Richard,et al.  Univariate and Multivariate Stochastic Volatility Models: Estimation and Diagnostics , 2003 .

[37]  Viktor Winschel,et al.  Solving, Estimating, and Selecting Nonlinear Dynamic Models Without the Curse of Dimensionality , 2010 .

[38]  Iain L. MacDonald,et al.  Some nonstandard stochastic volatility models and their estimation using structured hidden Markov models , 2012 .

[39]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[40]  H. Migon,et al.  Stochastic volatility in mean models with scale mixtures of normal distributions and correlated erro , 2011 .

[41]  Junior Maih,et al.  Implementing the Zero Lower Bound in an Estimated Regime-Switching DSGE Model , 2016 .

[42]  J. Míguez,et al.  Nested particle filters for online parameter estimation in discrete-time state-space Markov models , 2013, Bernoulli.

[43]  Daniel F. Waggoner,et al.  Sources of Macroeconomic Fluctuations: A Regime-Switching DSGE Approach , 2010 .

[44]  H. Bjørnland,et al.  Do Central Banks Respond to Exchange Rate Movements? A Markov-Switching Structural Investigation , 2013 .

[45]  James B. Wiggins Option values under stochastic volatility: Theory and empirical estimates , 1987 .

[46]  Daniel R. Smith Markov-Switching and Stochastic Volatility Diffusion Models of Short-Term Interest Rates , 2002 .

[47]  Petar M. Djuric,et al.  Gaussian particle filtering , 2003, IEEE Trans. Signal Process..

[48]  Roberto Casarin,et al.  Identifying Business Cycle Turning Points with Sequential Monte Carlo Methods , 2008 .

[49]  Arnaud Doucet,et al.  On Particle Methods for Parameter Estimation in State-Space Models , 2014, 1412.8695.

[50]  J. Richard,et al.  Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models , 2006 .

[51]  N. Chopin,et al.  Sequential Quasi-Monte Carlo , 2014, 1402.4039.

[52]  Siddhartha Chib,et al.  Stochastic Volatility with Leverage: Fast Likelihood Inference , 2004 .

[53]  John Parslow,et al.  On Disturbance State-Space Models and the Particle Marginal Metropolis-Hastings Sampler , 2012, SIAM/ASA J. Uncertain. Quantification.

[54]  Rong Chen,et al.  Delayed-pilot sampling for mixture Kalman filter with application in fading channels , 2002, IEEE Trans. Signal Process..

[55]  George Tauchen,et al.  Finite state markov-chain approximations to univariate and vector autoregressions , 1986 .

[56]  Mike K. P. So,et al.  A Stochastic Volatility Model With Markov Switching , 1998 .

[57]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[58]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .

[59]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .