Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues@@@Combinatorial properties and effective analytic continuation of Hurwitz polyzetas and their analogous

Combinatorial properties and effective analytic continuation of Hurwitz polyzetas and their analogous. In this work, we study a family of Parametrized Dirichlet generating series which contains coloured polyzeta and Hurwitz polyzeta functions. This family verifies two shuffle relations; and we also include quasi-periodic relations and translational variable relations. Thanks to encoding with iterated integral, we obtain an integral representation of this series and deduce their analytic continuation over C. At the end, we describe an algorithm giving the residues of this continuation.

[1]  Kuo-Tsai Chen,et al.  Iterated path integrals , 1977 .

[2]  M. Fliess,et al.  Fonctionnelles causales non linaires et indtermines non commutatives , 1981 .

[3]  I. Gessel Multipartite P-partitions and inner products of skew Schur functions , 1983 .

[4]  G. Jacob,et al.  Input/Output behaviour of nonlinear analytic systems: Rational approximations, nilpotent structural approximations , 1991 .

[5]  D. J. Broadhurst,et al.  Knots and Numbers in ϕ4 Theory to 7 Loops and Beyond , 1995 .

[6]  D. J. Broadhurst,et al.  Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops , 1996, hep-th/9609128.

[7]  Une étude des séries formelles non commutatives, pour l'approximation et l'identification des systèmes dynamiques , 1998 .

[8]  Vincel Hoang Ngoc Minh Fonctions de Dirichlet d'ordre n et de paramètre t , 1998, Discret. Math..

[9]  Gérard Jacob,et al.  Symbolic integration of meromorphic differential systems via Dirichlet functions , 2000, Discret. Math..

[10]  M. Petitot,et al.  DE L’ALGÈBRE DES ζ DE RIEMANN MULTIVARIÉES À L’ALGÈBRE DES ζ DE HURWITZ MULTIVARIÉES , 2001 .

[11]  Jean Ecalle,et al.  ARI/GARI, la dimorphie et l'arithmétique des multizêtas : un premier bilan , 2003 .

[12]  J. Écalle Multizetas, perinomal numbers, arithmetical dimorphy, and ARI/GARI , 2004 .

[13]  Johannes Blümlein,et al.  Algebraic relations between harmonic sums and associated quantities , 2004 .

[14]  Hoang Ngoc Minh,et al.  Algorithmic and combinatoric aspects of multiple harmonic sums , 2005 .

[15]  Jean-Yves Enjalbert,et al.  Analytic and combinatoric aspects of Hurwitz polyzêtas , 2007 .

[16]  Vincel Hoang Ngoc Minh,et al.  Noncommutative algebra, multiple harmonic sums and applications in discrete probability , 2009, J. Symb. Comput..

[17]  J. F.,et al.  The Radiation Theories of Tomonaga , Schwinger , and Feynman , 2011 .