Tuneable reflexes control antennal positioning in flying hawkmoths

[1]  S. Sane,et al.  A Comparative Study of Antennal Mechanosensors in Insects , 2019, Indian Insects.

[2]  남동석,et al.  III , 1751, Olav Audunssøn.

[3]  S. Sane,et al.  The mechanosensory‐motor apparatus of antennae in the Oleander hawk moth (Daphnis nerii, Lepidoptera) , 2018, The Journal of comparative neurology.

[4]  Alexander Peyser,et al.  Nest 2.12.0 , 2017 .

[5]  Simon Sponberg,et al.  Integration of parallel mechanosensory and visual pathways resolved through sensory conflict , 2016, Proceedings of the National Academy of Sciences.

[6]  Sanjay P Sane,et al.  Airflow and optic flow mediate antennal positioning in flying honeybees , 2016, eLife.

[7]  Jonathan P. Dyhr,et al.  Luminance-dependent visual processing enables moth flight in low light , 2015, Science.

[8]  A. Mamiya,et al.  Antennal Mechanosensory Neurons Mediate Wing Motor Reflexes in Flying Drosophila , 2015, The Journal of Neuroscience.

[9]  J. Guckenheimer,et al.  Controlling roll perturbations in fruit flies , 2015, Journal of The Royal Society Interface.

[10]  Itai Cohen,et al.  Pitch perfect: how fruit flies control their body pitch angle , 2015, Journal of Experimental Biology.

[11]  S. Sane,et al.  Antennal Mechanosensors and Their Evolutionary Antecedents , 2015 .

[12]  Sanjay P Sane,et al.  Encoding properties of the mechanosensory neurons in the Johnston's organ of the hawk moth, Manduca sexta , 2014, Journal of Experimental Biology.

[13]  Sanjay P. Sane,et al.  Visual feedback influences antennal positioning in flying hawk moths , 2014, Journal of Experimental Biology.

[14]  Y. Yamawaki,et al.  Antennal pointing at a looming object in the cricket Acheta domesticus. , 2014, Journal of insect physiology.

[15]  Manu S. Madhav,et al.  Closed-loop stabilization of the Jamming Avoidance Response reveals its locally unstable and globally nonlinear dynamics , 2013, Journal of Experimental Biology.

[16]  V. Dürr,et al.  Central drive and proprioceptive control of antennal movements in the walking stick insect , 2013, Journal of Physiology-Paris.

[17]  R. F. Chapman,et al.  The Insects: Structure and Function , 1969 .

[18]  Sunil Prabhakar,et al.  The neural mechanisms of antennal positioning in flying moths , 2012, Journal of Experimental Biology.

[19]  Michael H Dickinson,et al.  Active and Passive Antennal Movements during Visually Guided Steering in Flying Drosophila , 2011, The Journal of Neuroscience.

[20]  Sarah A. Stamper,et al.  Stimulus predictability mediates a switch in locomotor smooth pursuit performance for Eigenmannia virescens , 2011, Journal of Experimental Biology.

[21]  Eric J. Warrant,et al.  Vision and visual navigation in nocturnal insects. , 2011, Annual review of entomology.

[22]  Thomas L. Daniel,et al.  Antennae in the hawkmoth Manduca sexta (Lepidoptera, Sphingidae) mediate abdominal flexion in response to mechanical stimuli , 2010, Journal of Comparative Physiology A.

[23]  Michael B. Reiser,et al.  Walking Modulates Speed Sensitivity in Drosophila Motion Vision , 2010, Current Biology.

[24]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[25]  David J. Anderson,et al.  Distinct sensory representations of wind and near-field sound in the Drosophila brain , 2009, Nature.

[26]  Hidehiko K. Inagaki,et al.  The neural basis of Drosophila gravity-sensing and hearing , 2009, Nature.

[27]  Tyson L Hedrick,et al.  Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems , 2008, Bioinspiration & biomimetics.

[28]  S. Sane,et al.  Antennal Mechanosensors Mediate Flight Control in Moths , 2007, Science.

[29]  T L Hedrick,et al.  Flight control in the hawkmoth Manduca sexta: the inverse problem of hovering , 2006, Journal of Experimental Biology.

[30]  N. Cowan,et al.  Task-level control of rapid wall following in the American cockroach , 2006, Journal of Experimental Biology.

[31]  Jiro Okada,et al.  Active tactile sensing for localization of objects by the cockroach antenna , 2006, Journal of Comparative Physiology A.

[32]  Nathaniel P. Jacobson,et al.  Induced airflow in flying insects II. Measurement of induced flow , 2006, Journal of Experimental Biology.

[33]  P. Bräunig,et al.  Suboesophageal DUM neurones are part of the antennal motor system of locusts and crickets , 1990, Experientia.

[34]  V. Dürr,et al.  Antennal movements and mechanoreception: neurobiology of active tactile sensors , 2005 .

[35]  P. Déglise,et al.  Antennal movements as indicators of odor detection by worker honeybees , 2005 .

[36]  H. Honegger,et al.  The antennal motor system of crickets: modulation of muscle contractions by a common inhibitor, DUM neurons, and proctolin , 1993, Journal of Comparative Physiology A.

[37]  P. Bräunig,et al.  GABA-like immunoreactivity in a common inhibitory neuron of the antennal motor system of crickets , 1990, Cell and Tissue Research.

[38]  H. Honegger A preliminary note on a new optomotor response in crickets: Antennal tracking of moving targets , 1981, Journal of comparative physiology.

[39]  H. Heinzel,et al.  Aerodynamic and mechanical properties of the antennae as air-current sense organs inLocusta migratoria , 1980, Journal of Comparative Physiology A.

[40]  Herbert Heran,et al.  Wahrnehmung und Regelung der Flugeigengeschwindigkeit bei Apis mellifica L. , 1959, Zeitschrift für vergleichende Physiologie.

[41]  Aerodynamic and mechanical properties of the antennae as air-current sense organs inLocusta migratoria , 2004, Journal of comparative physiology.

[42]  Y Toh,et al.  Peripheral representation of antennal orientation by the scapal hair plate of the cockroach Periplaneta americana. , 2001, The Journal of experimental biology.

[43]  T. Baker,et al.  Odour-plume dynamics influence the brain's olfactory code , 2001, Nature.

[44]  J. Okada,et al.  The role of antennal hair plates in object-guided tactile orientation of the cockroach (Periplaneta americana) , 2000, Journal of Comparative Physiology A.

[45]  N. Vickers Mechanisms of animal navigation in odor plumes. , 2000, The Biological bulletin.

[46]  R. Murphey,et al.  Controlling the motor neuron. , 1999, International review of neurobiology.

[47]  Khashayar Pakdaman,et al.  COMPUTATIONAL NEUROSCIENCE: TOOLS FOR STUDYING THE NERVOUS SYSTEM , 1998 .

[48]  J. Hildebrand,et al.  Organization of the antennal motor system in the sphinx moth Manduca sexta , 1997, Cell and Tissue Research.

[49]  M. Burrows,et al.  Central connections of sensory neurones from a hair plate proprioceptor in the thoraco-coxal joint of the locust. , 1995, The Journal of experimental biology.

[50]  P. Kloppenburg,et al.  Antennal reflexes in the honeybee : tools for studying the nervous system , 1993 .

[51]  R. Hengstenberg Multisensory control in insect oculomotor systems. , 1993, Reviews of oculomotor research.

[52]  K. Pearson,et al.  Properties of the trochanteral hair plate and its function in the control of walking in the cockroach. , 1976, The Journal of experimental biology.

[53]  K G Pearson,et al.  Connexions between hair-plate afferents and motoneurones in the cockroach leg. , 1976, The Journal of experimental biology.

[54]  M. Burrows Monosynaptic connexions between wing stretch receptors and flight motoneurones of the locust. , 1975, The Journal of experimental biology.

[55]  M. Gewecke The Antennae of Insects as Air-Current Sense Organs and their Relationship to the Control of Flight , 1974 .

[56]  R. Chapman The Insects: Structure and Function , 1969 .

[57]  K. Kaissling,et al.  Der Bau der Antenne des Seidenspinners Bombyx mori L. I. Architektur und Bewegungsapparat der Antenne sowie Struktur der Cuticula , 1956 .

[58]  J. Pringle,et al.  Proprioception In Insects: III. The Function Of The Hair Sensilla At The Joints , 1938 .