Probing the fundamental detection limit of photonic crystal cavities

The accurate characterization of single nanoparticles in colloidal solutions in terms of their size and morphology is important for medical diagnostics and aerosol investigations. However, it is challenging to achieve a high throughput for very small (sub-100 nm) particles. In particular, it is not well established what the fundamental limits are on the trade-off between speed and the smallest detectable particle. Here we study these limits for the case of refractive index sensing based on resonant photonic crystal cavities. Importantly, we have reached a regime where the fundamental thermal fluctuations set the intrinsic detection limit for acquisition sampling times tacq larger than 3 μs. Such an intrinsic fundamental limit corresponds to 1/2000th the linewidth of the optical spectrum of photonic crystal cavities of effective mode volume as small as 0.06  μm3. The results of this work indicate that it is possible to monitor up to 33 million particles per second with a particle size down to 34 nm, making it a promising technique for fast real-time biosensing.

[1]  Tang Li,et al.  Observation of Fundamental Thermal Noise in Optical Fibers down to Infrasonic Frequencies , 2015 .

[2]  G. Cranch,et al.  Comment on “Probing the Ultimate Limit of Fiber-Optic Strain Sensing” , 2012, Science.

[3]  Imre Mäger,et al.  Extracellular vesicles: biology and emerging therapeutic opportunities , 2013, Nature Reviews Drug Discovery.

[4]  Harald Giessen,et al.  Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing. , 2015, Nano letters.

[5]  C. Théry,et al.  Membrane vesicles as conveyors of immune responses , 2009, Nature Reviews Immunology.

[6]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[7]  M. Eigen,et al.  Sorting single molecules: application to diagnostics and evolutionary biotechnology. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Serge Rosenblum,et al.  Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators , 2015, Nature Communications.

[9]  Michael L. Gorodetsky,et al.  Fundamental thermal fluctuations in microspheres , 2004 .

[10]  P. Ferraro,et al.  Response to Comment on “Probing the Ultimate Limit of Fiber-Optic Strain Sensing” , 2012, Science.

[11]  K. Vahala Optical microcavities , 2003, Nature.

[12]  Wei Pang,et al.  Performance and noise analysis of optical microresonator-based biochemical sensors using intensity detection. , 2016, Optics express.

[13]  R. Nawrodt,et al.  Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures , 2012 .

[14]  Lan Yang,et al.  Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices , 2012 .

[15]  Susumu Noda,et al.  Fine-tuned high-Q photonic-crystal nanocavity. , 2005, Optics express.

[16]  S. Arnold,et al.  Single virus detection from the reactive shift of a whispering-gallery mode , 2008, Proceedings of the National Academy of Sciences.

[17]  Joachim Knittel,et al.  Back-scatter based whispering gallery mode sensing , 2013, Scientific Reports.

[18]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[19]  P. Ferraro,et al.  Probing the Ultimate Limit of Fiber-Optic Strain Sensing , 2010, Science.

[20]  D. Keng,et al.  Resonance fluctuations of a whispering gallery mode biosensor by particles undergoing Brownian motion , 2007 .

[21]  Emmanuel Picard,et al.  Single-cell bacterium identification with a SOI optical microcavity , 2016 .

[22]  T. Krauss,et al.  Silicon nanostructures for photonics and photovoltaics. , 2014, Nature nanotechnology.

[23]  Andrea Di Falco,et al.  Slotted Photonic Crystal Sensors , 2013, Sensors.

[24]  Juejun Hu,et al.  Design guidelines for optical resonator biochemical sensors , 2009 .