Solid Oxide Fuel Cell Cathodes: Polarization Mechanisms and Modeling of the Electrochemical Performance

▪ Abstract Several recent experimental and numerical investigations have contributed to the improved understanding of the electrochemical mechanisms taking place at solid oxide fuel cell (SOFC) cathodes and yielded valuable information on the relationships between alterable parameters (geometry/material) and the cathodic polarization resistance. Efforts to reduce the polarization resistance in SOFCs can benefit from these results, and some important aspects of the corresponding studies are reviewed. Experimental results, particularly measurements using geometrically well-defined Sr-doped LaMnO3 (LSM) cathodes, are discussed. In regard to simulations, the different levels of sophistication used in SOFC electrode modeling studies are summarized and compared. Exemplary simulations of mixed conducting cathodes that show the capabilities and limits of different modeling levels are described.

[1]  M. H. Hebb Electrical Conductivity of Silver Sulfide , 1952 .

[2]  Rolf Landauer,et al.  The Electrical Resistance of Binary Metallic Mixtures , 1952 .

[3]  I. Yokota On the Theory of Mixed Conduction with Special Reference to Conduction in Silver Sulfide Group Semiconductors , 1961 .

[4]  R. D. Levie,et al.  On porous electrodes in electrolyte solutions—IV , 1963 .

[5]  S. Kirkpatrick Percolation and Conduction , 1973 .

[6]  A. Nowick,et al.  Cathodic and Anodic Polarization Phenomena at Platinum Electrodes with Doped CeO2 as Electrolyte I . Steady‐State Overpotential , 1979 .

[7]  K. Takanaka Spin-orbit effect on Tc of anisotropic superconductors , 1982 .

[8]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[9]  Koji Amano,et al.  Electrode reaction at Pt, O2(g)/stabilized zirconia interfaces. Part I: Theoretical consideration of reaction model , 1987 .

[10]  J. H. Kuo,et al.  Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: Defect structure, electrical conductivity, and thermoelectric power , 1990 .

[11]  R. Newnham,et al.  Electrical Resistivity of Composites , 1990 .

[12]  S. Osawa,et al.  High Temperature Air Cathodes Containing Ion Conductive Oxides , 1991 .

[13]  Norio Miura,et al.  Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability , 1991 .

[14]  Junichiro Mizusaki,et al.  Reaction Kinetics and Microstructure of the Solid Oxide Fuel Cells Air Electrode La0.6Ca0.4MnO3 / YSZ , 1991 .

[15]  A. Hammouche,et al.  Electrocatalytic Properties and Nonstoichiometry of the High Temperature Air Electrode La1 − x Sr x MnO3 , 1991 .

[16]  N. Sakai,et al.  Thermodynamic Analysis of Reaction Profiles Between LaMO3 ( M = Ni , Co , Mn ) and ZrO2 , 1991 .

[17]  B. Steele,et al.  Oxygen transport in selected nonstoichiometric perovskite-structure oxides , 1992 .

[18]  J. V. Roosmalen Chemical reactivity and interdiffusion of (La, Sr)MnO3 and (Zr, Y)O2, solid oxide fuel cell cathode and electrolyte materials , 1992 .

[19]  David J. Bergman,et al.  Physical Properties of Macroscopically Inhomogeneous Media , 1992 .

[20]  M. Nishiya,et al.  LaMnO3 air cathodes containing ZrO2 electrolyte for high temperature solid oxide fuel cells , 1992 .

[21]  W. L. Worell,et al.  Electrical properties of mixed-conducting oxides having high oxygen-ion conductivity , 1992 .

[22]  C. Nan Physics of inhomogeneous inorganic materials , 1993 .

[23]  Harumi Yokokawa,et al.  Oxygen permeation modelling of perovskites , 1993 .

[24]  M. Mogensen,et al.  ac Impedance study of the oxygen reduction mechanism on La1−xSrxMnO3 in solid oxide fuel cells , 1993 .

[25]  B. Abeles,et al.  Diffusion-reaction in mixed ionic-electronic solid oxide membranes with porous electrodes , 1994 .

[26]  K. Wippermann,et al.  The kinetics of electrochemical reactions on high temperature fuel cell electrodes , 1994 .

[27]  T. Pagnier,et al.  Oxygen Reduction at La0.5Sr0.5MnO3 Thin Film/Yttria‐Stabilized Zirconia Interface Studied by Impedance Spectroscopy , 1994 .

[28]  F. Berkel,et al.  Characterization of solid oxide fuel cell electrodes by impedance spectroscopy and I–V characteristics , 1994 .

[29]  E. Cordfunke,et al.  The Defect Chemistry of LaMnO3±δ: 4. Defect Model for LaMnO3+δ , 1994 .

[30]  Wolfgang Göpel,et al.  Active Reaction Sites for Oxygen Reduction in La0.9Sr0.1,MnO3/YSZ Electrodes , 1995 .

[31]  C. C. Chen,et al.  Immittance response of La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3} based electrochemical cells , 1995 .

[32]  Harlan U. Anderson,et al.  Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3 , 1995 .

[33]  Svein Sunde,et al.  Calculation of Conductivity and Polarization Resistance of Composite SOFC Electrodes from Random Resistor Networks , 1995 .

[34]  B. Abeles,et al.  Transport in solid oxide porous electrodes: Effect of gas diffusion , 1995 .

[35]  A. Hammouche,et al.  Impedance spectroscopy analysis of La1 − xSritxMnO3-yttria-stabilized zirconia electrode kinetics , 1995 .

[36]  M. Mogensen,et al.  Manganite-zirconia composite cathodes for SOFC: Influence of structure and composition , 1995 .

[37]  Svein Sunde,et al.  Monte Carlo Simulations of Polarization Resistance of Composite Electrodes for Solid Oxide Fuel Cells , 1996 .

[38]  Svein Sunde,et al.  Monte Carlo Simulations of Conductivity of Composite Electrodes for Solid Oxide Fuel Cells , 1996 .

[39]  M. Kleitz,et al.  Optimized SOFC electrode microstructure , 1996 .

[40]  William J. Weber,et al.  Electrochemical properties of mixed conducting perovskites La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y}Fe{sub y}O{sub 3{minus}{delta}} (M = Sr, Ba, Ca) , 1996 .

[41]  William J. Weber,et al.  Electrochemical Properties of Mixed Conducting Perovskites La1 − x M x Co1 − y Fe y O 3 − δ (M = Sr, Ba, Ca) , 1996 .

[42]  J. Goodenough,et al.  Fuel cells with doped lanthanum gallate electrolyte , 1996 .

[43]  E. Ahlgren,et al.  Thermoelectric power and electrical conductivity of strontium-doped lanthanum manganite , 1996 .

[44]  H. Yokokawa,et al.  Materials and Characterization of Solid Oxide Fuel Cell , 1996 .

[45]  Koichi Yamada,et al.  Cathodic reaction mechanism for dense Sr-doped lanthanum manganite electrodes , 1996 .

[46]  Junichiro Mizusaki,et al.  A Chemical Diffusion‐Controlled Electrode Reaction at the Compact La1 − x Sr x MnO3/Stabilized Zirconia Interface in Oxygen Atmospheres , 1996 .

[47]  M. Mogensen,et al.  Performance/structure correlation for composite SOFC cathodes , 1996 .

[48]  Koichi Yamada,et al.  The relationship between overpotential and the three phase boundary length , 1996 .

[49]  Seung M. Oh,et al.  Origin of cathodic degradation and new phase formation at the La0.9Sr0.1MnO3/YSZ interface , 1996 .

[50]  M. Odgaard,et al.  SOFC cathode kinetics investigated by the use of cone shaped electrodes: The effect of polarization and mechanical load , 1996 .

[51]  B. Steele Survey of materials selection for ceramic fuel cells II. Cathodes and anodes , 1996 .

[52]  A. Hammou,et al.  Localization of oxygen cathodic reduction zone at lanthanum manganite/zirconia interface , 1996 .

[53]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[54]  A. Mcevoy,et al.  A study on the La1 − xSrxMnO3 oxygen cathode , 1996 .

[55]  H. Wiemhöfer,et al.  Improved preparation of La1−xMexCoO3−δ (Me = Sr, Ca) and analysis of oxide ion conductivity with ion conducting microcontacts , 1997 .

[56]  Svein Sunde,et al.  Mathematical Modeling of Oxygen Exchange and Transport in Air‐Perovskite‐YSZ Interface Regions I. Reduction of Intermediately Adsorbed Oxygen , 1997 .

[57]  Henricus J.M. Bouwmeester,et al.  Electrode Properties of Sr‐Doped LaMnO3 on Yttria‐Stabilized Zirconia II. Electrode Kinetics , 1997 .

[58]  H. Bouwmeester,et al.  Electrode Properties of Sr‐Doped LaMnO3 on Yttria‐Stabilized Zirconia I. Three‐Phase Boundary Area , 1997 .

[59]  H. Bouwmeester,et al.  Oxygen permeation of La0.3Sr0.7CoO3−δ , 1997 .

[60]  Jürgen Fleig,et al.  The Influence of Current Constriction on the Impedance of Polarizable Electrodes Application to Fuel Cell Electrodes , 1997 .

[61]  S. Sunde Calculations of impedance of composite anodes for solid oxide fuel cells , 1997 .

[62]  Werner Lehnert,et al.  Correlated Resistor Network Study of Porous Solid Oxide Fuel Cell Anodes , 1997 .

[63]  J. Jamnik,et al.  Transport across Boundary Layers in Ionic Crystals Part I: General Formalism and Conception , 1997 .

[64]  Meilin Liu Distributions of Charged Defects in Mixed Ionic‐Electronic Conductors I. General Equations for Homogeneous Mixed Ionic‐Electronic Conductors , 1997 .

[65]  Jürgen Fleig,et al.  The Influence of Laterally Inhomogeneous Contacts on the Impedance of Solid Materials: A Three-Dimensional Finite-Element Study , 1997 .

[66]  Kuan-Zong Fung,et al.  The Effect of Porous Composite Electrode Structure on Solid Oxide Fuel Cell Performance I. Theoretical Analysis , 1997 .

[67]  Elisabetta Arato,et al.  Some more considerations on the optimization of cermet solid oxide fuel cell electrodes , 1998 .

[68]  H. Tagawa,et al.  High temperature electrocatalytic properties of the SOFC air electrode La0.8Sr0.2MnO3/YSZ , 1998 .

[69]  Y.-X. Liu,et al.  Branch cut integration method for computing signal propagation through dispersive media , 1998 .

[70]  Svein Sunde,et al.  Mathematical Modeling of Oxygen Exchange and Transport in Air‐Perovskite‐Yttria‐Stabilized Zirconia Interface Regions II. Direct Exchange of Oxygen Vacancies , 1998 .

[71]  Miho Honda,et al.  Intermediate Temperature Solid Oxide Fuel Cells Using a New LaGaO3 Based Oxide Ion Conductor I. Doped as a New Cathode Material , 1998 .

[72]  V. Antonucci,et al.  Micro-modelling of solid oxide fuel cell electrodes , 1998 .

[73]  J. Frade,et al.  Electrochemical permeability of La1−xSrxCoO3−δ materials , 1998 .

[74]  Stuart B. Adler,et al.  Mechanism and kinetics of oxygen reduction on porous La1−xSrxCoO3−δ electrodes , 1998 .

[75]  Ludwig J. Gauckler,et al.  La2Zr2O7 formation and oxygen reduction kinetics of the La0.85Sr0.15MnyO3, O2(g)|YSZ system , 1998 .

[76]  J. Kilner,et al.  Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: Part I. Oxygen tracer diffusion , 1998 .

[77]  Wenzhao Li,et al.  The Role of 8 mol % Yttria Stabilized Zirconia in the Improvement of Electrochemical Performance of Lanthanum Manganite Composite Electrodes , 1998 .

[78]  A. Svensson,et al.  Current Distribution at Porous Electrode‐Solid Oxide Electrolyte Interface , 1998 .

[79]  S. Barnett,et al.  Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study , 1998 .

[80]  Tohru Kato,et al.  Active Sites Imaging for Oxygen Reduction at the La0.9Sr0.1MnO3 − x /Yttria‐Stabilized Zirconia Interface by Secondary‐Ion Mass Spectrometry , 1998 .

[81]  Jürgen Fleig,et al.  Inhomogeneous current distributions at grain boundaries and electrodes and their impact on the impedance , 1998 .

[82]  Joachim Maier,et al.  A powerful electrical network model for the impedance of mixed conductors , 1999 .

[83]  Mogens Bjerg Mogensen,et al.  Characterisation of composite SOFC cathodes using electrochemical impedance spectroscopy , 1999 .

[84]  Y. Matsuzaki,et al.  Relationship between the steady-state polarization of the SOFC air electrode, La0.6Sr0.4MnO3+δ/YSZ, and its complex impedance measured at the equilibrium potential , 1999 .

[85]  W. Lehnert,et al.  Statistical geometry of reaction space in porous cermet anodes based on ion-conducting electrolytes: Patterns of degradation , 1999 .

[86]  S. Singhal,et al.  Polarization Effects in Intermediate Temperature, Anode‐Supported Solid Oxide Fuel Cells , 1999 .

[87]  Jürgen Fleig,et al.  Geometry Dependence of Cathode Polarization in Solid Oxide Fuel Cells Investigated by Defined Sr ‐ Doped LaMnO3 Microelectrodes , 1999 .

[88]  D. McLachlan Analytical Functions for the dc and ac Conductivity of Conductor-Insulator Composites , 2000 .

[89]  N. Sakai,et al.  A novel technique for imaging electrochemical reaction sites on a solid oxide electrolyte , 2000 .

[90]  A. Jacobson,et al.  Impedance studies of oxygen exchange on dense thin film electrodes of La0.5Sr0.5CoO3-δ , 2000 .

[91]  C. Mari,et al.  A random resistor model to forecast the electrical properties of crystalline ionic conductor composites , 2000 .

[92]  H. Wiemhöfer,et al.  Measurement of ionic conductivity in mixed conducting compounds using solid electrolyte microcontacts , 2000 .

[93]  Tohru Kato,et al.  Oxygen reduction sites and diffusion paths at La0.9Sr0.1MnO3âx/yttria-stabilized zirconia interface for different cathodic overvoltages by secondary-ion mass spectrometry , 2000 .

[94]  J. Zhang,et al.  Deposition of Chromium Species at Sr‐Doped LaMnO3 Electrodes in Solid Oxide Fuel Cells II. Effect on O 2 Reduction Reaction , 2000 .

[95]  H. Tuller,et al.  Performance of La0.9Sr0.1Ga0.5Ni0.5O3 as a Cathode for a Lanthanum Gallate Fuel Cell , 2000 .

[96]  E. Ivers-Tiffée,et al.  Stability at La0.6Sr0.4CoO3-d cathode/La0.8Sr0.2Ga0.8Mg0.2O2.8 electrolyte interface under current flow for solid oxide fuel cells , 2000 .

[97]  S. Sunde Simulations of Composite Electrodes in Fuel Cells , 2000 .

[98]  F. Tietz,et al.  Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes , 2000 .

[99]  F. Poulsen Defect chemistry modelling of oxygen-stoichiometry, vacancy concentrations, and conductivity of (La1−xSrx)yMnO3±δ , 2000 .

[100]  F. Tietz,et al.  Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes , 2000 .

[101]  Brian C. H. Steele,et al.  Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C , 2000 .

[102]  M. Mogensen,et al.  Composite Electrodes in Solid Oxide Fuel Cells and Similar Solid State Devices , 2000 .

[103]  B. Steele Materials for IT-SOFC stacks: 35 years R&D: the inevitability of gradualness? , 2000 .

[104]  S. Jiang,et al.  Deposition of Chromium Species at Sr‐Doped LaMnO3 Electrodes in Solid Oxide Fuel Cells. I. Mechanism and Kinetics , 2000 .

[105]  Joachim Maier,et al.  Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications , 2001 .

[106]  Tohru Kato,et al.  Oxygen Transport at the LaMnO3 Film/Yttria-Stabilized Zirconia Interface under Different Cathodic Overpotentials by Secondary Ion Mass Spectrometry , 2001 .

[107]  A. Ioselevich,et al.  Phenomenological Theory of Solid Oxide Fuel Cell Anode , 2001 .

[108]  S. Chan,et al.  Anode Micro Model of Solid Oxide Fuel Cell , 2001 .

[109]  Mogens Bjerg Mogensen,et al.  Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes , 2001 .

[110]  Tohru Kato,et al.  Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique , 2002 .

[111]  C. Mari,et al.  Modelling and simulation of the mechanical properties of YSZ/Al2O3 composites: a preliminary study , 2002 .

[112]  Mogens Bjerg Mogensen,et al.  Progress in understanding SOFC electrodes , 2002 .

[113]  K. Kawamura,et al.  Determination of Oxygen Vacancy Concentration in a Thin Film of La0.6Sr0.4CoO3 − δ by an Electrochemical Method , 2002 .

[114]  H. Habermeier,et al.  The geometry dependence of the polarization resistance of Sr-doped LaMnO3 microelectrodes on yttria-stabilized zirconia , 2002 .

[115]  S. Jiang,et al.  Electrode behaviour at (La,Sr)MnO3/Y2O3–ZrO2 interface by electrochemical impedance spectroscopy , 2002 .

[116]  S. Perry,et al.  Electrical conductivity relaxation studies of an epitaxial La0.5Sr0.5CoO3−δ thin film , 2002 .

[117]  Jürgen Fleig,et al.  On the width of the electrochemically active region in mixed conducting solid oxide fuel cell cathodes , 2002 .

[118]  K. Wiik,et al.  Reactions between strontium-substituted lanthanum manganite and yttria-stabilized zirconia : I, Powder samples , 2004 .