Residual‐based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods

In this paper, we present a finite element method with a residual‐based artificial viscosity for simulation of turbulent compressible flow, with adaptive mesh refinement based on a posteriori error estimation with sensitivity information from an associated dual problem. The artificial viscosity acts as a numerical stabilization, as shock capturing, and as turbulence capturing for large eddy simulation of turbulent flow. The adaptive method resolves parts of the flow indicated by the a posteriori error estimates but leaves shocks and turbulence under‐resolved in a large eddy simulation. The method is tested for examples in 2D and 3D and is validated against experimental data. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  Niclas Jansson,et al.  Adaptive computation of aeroacoustic sources for a rudimentary landing gear , 2014 .

[2]  INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS , 2012 .

[3]  Niclas Jansson,et al.  Adaptive computation of aeroacoustic sources for a rudimentary landing gear using lighthill's analogy , 2011 .

[4]  Jean-Luc Guermond,et al.  Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..

[5]  Murtazo Nazarov,et al.  Adaptive Algorithms and High Order Stabilization for Finite Element Computation of Turbulent Compressible Flow , 2011 .

[6]  Johan Hoffman,et al.  An adaptive finite element method for inviscid compressible flow , 2010 .

[7]  Thomas J. R. Hughes,et al.  Stabilized Methods for Compressible Flows , 2010, J. Sci. Comput..

[8]  Ralf Hartmann,et al.  Error Estimation and Adaptive Mesh Refinement for Aerodynamic Flows , 2010 .

[9]  Ramon Codina,et al.  A heuristic argument for the sole use of numerical stabilization with no physical LES modeling in the simulation of incompressible turbulent flows , 2009 .

[10]  Johan Hoffman,et al.  Efficient computation of mean drag for the subcritical flow past a circular cylinder using general Galerkin G2 , 2009 .

[11]  Alvaro L. G. A. Coutinho,et al.  Three-Dimensional Edge-Based SUPG Computation of Inviscid Compressible Flows With YZβ Shock-Capturing , 2009 .

[12]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres With the V-SGS Stabilization and YZβ Shock-Capturing , 2009 .

[13]  Jean-Luc Guermond,et al.  On the use of the notion of suitable weak solutions in CFD , 2008 .

[14]  Johan Hoffman,et al.  Blow up of incompressible Euler solutions , 2008 .

[15]  Jean-Luc Guermond,et al.  Entropy-based nonlinear viscosity for Fourier approximations of conservation laws , 2008 .

[16]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[17]  Johan Hoffman,et al.  Adaptive simulation of the subcritical flow past a sphere , 2006, Journal of Fluid Mechanics.

[18]  Johan Hoffman,et al.  A new approach to computational turbulence modeling , 2006 .

[19]  Charbel Farhat,et al.  A dynamic variational multiscale method for large eddy simulations on unstructured meshes , 2006 .

[20]  Johan Hoffman,et al.  Computation of Mean Drag for Bluff Body Problems Using Adaptive DNS/LES , 2005, SIAM J. Sci. Comput..

[21]  Andrew W. Cook,et al.  Short Note: Hyperviscosity for shock-turbulence interactions , 2005 .

[22]  Tayfun E. Tezduyar,et al.  Stabilization and shock-capturing parameters in SUPG formulation of compressible flows , 2004 .

[23]  Charbel Farhat,et al.  A Variational Multiscale Method for the Large Eddy Simulation of Compressible Turbulent Flows on Unstructured Meshes - Application to vortex shedding , 2004 .

[24]  W. Cabot,et al.  A high-wavenumber viscosity for high-resolution numerical methods , 2004 .

[25]  王东东,et al.  Computer Methods in Applied Mechanics and Engineering , 2004 .

[26]  Johan Hoffman,et al.  On Duality-Based A Posteriori Error Estimation in Various Norms and Linear Functionals for Large Eddy Simulation , 2004, SIAM J. Sci. Comput..

[27]  J. Hoffman ON DUALITY BASED A POSTERIORI ERROR ESTIMATION IN VARIOUS NORMS AND LINEAR FUNCTIONALS FOR LES , 2004 .

[28]  Jean-Luc Guermond,et al.  MATHEMATICAL ANALYSIS OF A SPECTRAL HYPERVISCOSITY LES MODEL FOR THE SIMULATION OF TURBULENT FLOWS , 2003 .

[29]  Richard Liska,et al.  Comparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler Equations , 2003, SIAM J. Sci. Comput..

[30]  C Thompson,et al.  Applied CFD techniques: An introduction based on finite element methods , 2002 .

[31]  P. Saugat Large eddy simulation for incompressible flows , 2001 .

[32]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[33]  J. Guermond Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .

[34]  F. Grinstein,et al.  Monotonically integrated large eddy simulation of free shear flows , 1999 .

[35]  Chien-Cheng Chang,et al.  On the sources of aerodynamic forces: steady flow around a cylinder or a sphere , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[36]  R. Nzengwa Resolution of a fixed point problem by an incremental method and application in nonlinear elasticity , 1992 .

[37]  Anders Szepessy,et al.  Convergence of a streamline diffusion finite element method for a conservation law with boundary conditions , 1991 .

[38]  Peter Hansbo,et al.  On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws , 1990 .

[39]  Anders Szepessy,et al.  Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions , 1989 .

[40]  C. Hirsch Numerical computation of internal and external flows , 1988 .

[41]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems , 1986 .

[42]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .

[43]  Thomas J. R. Hughes,et al.  Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations , 1984 .

[44]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[45]  J. Anderson,et al.  Modern Compressible Flow: With Historical Perspective , 1982 .

[46]  A. B. Bailey,et al.  Sphere drag at Mach numbers from 0·3 to 2·0 at Reynolds numbers approaching 107 , 1979, Journal of Fluid Mechanics.

[47]  V. S. Murthy,et al.  Detailed Measurements on a Circular Cylinder in Cross Flow , 1978 .

[48]  A. B. Bailey,et al.  Free-Flight Measurements of Sphere Drag at Subsonic, Transonic, Supersonic, and Hypersonic Speeds for Continuum, Transition, and Near-Free- Molecular Flow Conditions , 1971 .

[49]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[50]  Caskey,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .

[51]  A. Charters,et al.  The Aerodynamic Performance of Small Spheres from Subsonic to High Supersonic Velocities , 1945 .