Viscoelasticity and primitive path analysis of entangled polymer liquids: from F-actin to polyethylene.

We combine computer simulations and scaling arguments to develop a unified view of polymer entanglement based on the primitive path analysis of the microscopic topological state. Our results agree with experimentally measured plateau moduli for three different polymer classes over a wide range of reduced polymer densities: (i) semidilute theta solutions of synthetic polymers, (ii) the corresponding dense melts above the glass transition or crystallization temperature, and (iii) solutions of semiflexible (bio)polymers such as F-actin or suspensions of rodlike viruses. Together, these systems cover the entire range from loosely to tightly entangled polymers. In particular, we argue that the primitive path analysis renormalizes a loosely to a tightly entangled system and provide a new explanation of the successful Lin-Noolandi packing conjecture for polymer melts.

[1]  Doros N. Theodorou,et al.  Topological Analysis of Linear Polymer Melts: A Statistical Approach , 2006 .

[2]  Andreas R. Bausch,et al.  A bottom-up approach to cell mechanics , 2006 .

[3]  Martin Kröger,et al.  Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems , 2005, Comput. Phys. Commun..

[4]  R. Larson,et al.  Primitive Path Identification and Statistics in Molecular Dynamics Simulations of Entangled Polymer Melts , 2005 .

[5]  S. Milner Predicting the Tube Diameter in Melts and Solutions , 2005 .

[6]  Sachin Shanbhag,et al.  Chain retraction potential in a fixed entanglement network. , 2005, Physical review letters.

[7]  Kurt Kremer,et al.  Identifying the primitive path mesh in entangled polymer liquids , 2004 .

[8]  Kurt Kremer,et al.  Rheology and Microscopic Topology of Entangled Polymeric Liquids , 2004, Science.

[9]  Richard S. Graham,et al.  Neutron-Mapping Polymer Flow: Scattering, Flow Visualization, and Molecular Theory , 2003, Science.

[10]  Steven J. Plimpton,et al.  Equilibration of long chain polymer melts in computer simulations , 2003, cond-mat/0306026.

[11]  Tadashi Inoue,et al.  Viscoelasticity of Polymers in ϑ Solvents around the Semidilute Regime , 2002 .

[12]  T. McLeish Tube theory of entangled polymer dynamics , 2002 .

[13]  D. Boal,et al.  Mechanics of the cell , 2001 .

[14]  D. Morse,et al.  Tube diameter in tightly entangled solutions of semiflexible polymers. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Jay X. Tang,et al.  Viscoelastic properties of semiflexible filamentous bacteriophage fd. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  David C. Morse,et al.  Viscoelasticity of Concentrated Isotropic Solutions of Semiflexible Polymers. 1. Model and Stress Tensor , 1998 .

[17]  E. Sackmann,et al.  Entanglement, Elasticity, and Viscous Relaxation of Actin Solutions , 1997, cond-mat/9712037.

[18]  T. Witten,et al.  Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties , 1994 .

[19]  J. Viovy,et al.  Chain Entanglement in Polymer Melts and Solutions , 1992 .

[20]  R. Colby,et al.  Effects of concentration and thermodynamic interaction on the viscoelastic properties of polymer solutions , 1991 .

[21]  B. M. Culbertson Multiphase Macromolecular Systems , 1990 .

[22]  Michael Rubinstein,et al.  Two-parameter scaling for polymers in Θ solvents , 1990 .

[23]  Noolandi,et al.  New view of entanglements in dense polymer systems. , 1987, Physical review letters.

[24]  Y. H. Lin Number of entanglement strands per cubed tube diameter, a fundamental aspect of topological universality in polymer viscoelasticity , 1987 .

[25]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[26]  A. Semenov Dynamics of concentrated solutions of rigid-chain polymers. Part 1.—Brownian motion of persistent macromolecules in isotropic solution , 1986 .

[27]  Michael Rubinstein,et al.  Statistics of the entanglement of polymers: Concentration effects , 1985 .

[28]  S. Edwards,et al.  Entanglement interactions in polymers and the chain contour concentration , 1981 .

[29]  P. G. de Gennes,et al.  Dynamical Scaling for Polymers in Theta Solvents , 1977 .

[30]  S. Edwards,et al.  The theory of rubber elasticity , 1976, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[31]  P. G. de Gennes,et al.  Remarks on entanglements and rubber elasticity , 1974 .

[32]  S. Edwards Statistical mechanics with topological constraints: I , 1967 .