Instrument‐independent tandem mass spectrometry database for XQQ instruments: The dynamical prerequisites

[1]  J. Vine,et al.  Quantification of leukotriene B4 in synovial fluid by gas chromatography/tandem mass spectrometry. , 1988, Biomedical & environmental mass spectrometry.

[2]  R. Boyd,et al.  A comparison of three experimental techniques for ion structure studies via collision‐induced reactions: The [C5H8]+˙ example , 1987 .

[3]  R. Martinez The NBS triple quadrupole tandem mass spectrometer , 1987 .

[4]  G. Baykut,et al.  Reactions of C3H3+ with Acetylene and Diacetylene in the Gas Phase. , 1987 .

[5]  R. Cooks,et al.  Instrumentation, applications, and energy deposition in quadrupole ion-trap tandem mass spectrometry , 1987 .

[6]  R. Martinez,et al.  Instrument-Independent CAD Spectral Databases: Absolute Cross-Section Measurements In QQQ Instruments , 1987, Journal of Research of the National Bureau of Standards.

[7]  J. Parker Ion Chemistry and Mass Spectrometry : edited by Jean H. Futrell, Wiley, New York, 1986, 335 pp., £57.50 , 1987 .

[8]  R. Martinez,et al.  Validation of absolute target thickness calibrations in a QQQ instrument by measuring absolute total cross-sections of Ne+ (Ne, Ne) Ne+ , 1986 .

[9]  M. Gross,et al.  Structures of gas phase C5H8 radical cations: A collisional ionization study , 1986 .

[10]  A. Brisson,et al.  Ion/molecule reaction inside the collision cell of a tandem quadrupole mass spectrometric system. 2. Energy dependence of ammonium ion formation , 1986 .

[11]  P. Dawson,et al.  Dissociation of the benzene ion by low energy collisions , 1986 .

[12]  P. Dawson Quadrupole mass analyzers: performance, design and some recent applications , 1986 .

[13]  J. Beynon,et al.  The variation of translational energy release in collision-induced dissociations of polyatomic ions with initial kinetic energy and with observation angle. I. Theoretical considerations , 1985 .

[14]  J. Beynon,et al.  Collision-induced dissociations of ions from zero to 4 keV translational energy in a single apparatus , 1985 .

[15]  P. Dawson,et al.  Chemical synthesis inside the collision cell of a MS/MS system: 1—Formation of adduct ions between protonated esters and ammonia , 1985 .

[16]  P. Dawson Low-energy collision-activated dissociation of n-butylbenzene. Effect of the electron energy used during parent ion formation , 1985 .

[17]  J. Futrell,et al.  A beam scattering study of the collision-induced dissociation of polyatomic ions CH4+ and C3H8+ at eV collision energies , 1984 .

[18]  J. Beynon,et al.  Angle-dependence of ion kinetic energy spectra obtained by using mass spectrometers I. Theoretical consequences of conservation laws for collisions , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  R. Cooks,et al.  Gas-phase thermochemical information from triple quadrupole mass spectrometers: Relative proton affinities of amines , 1983 .

[20]  P. Dawson A study of the collision-induced dissociation of C2H5OH2+ using various target gases , 1983 .

[21]  Richard A. Yost,et al.  Tandem mass spectrometry (MS/MS) instrumentation , 1983 .

[22]  D. J. Douglas,et al.  Studies of the mechanism of collision induced dissociation at low energies using a triple quadrupole , 1983 .

[23]  P. Dawson,et al.  Comparison of low-energy collisionally induced dissociation of n-butyl benzene ions with photodissociation , 1982 .

[24]  P. Dawson The collision-induced dissociation of protonated water clusters studied using a triple quadrupole , 1982 .

[25]  S. Lias,et al.  The Ion-Molecule Chemistry of C3H3 + and the Implications for Soot Formation , 1982 .

[26]  D. J. Douglas,et al.  The use of triple quadrupoles for sequential mass spectrometry: 2—A detailed case study , 1982 .

[27]  D. J. Douglas,et al.  The use of triple quadrupoles for sequential mass spectrometry: 1—The instrument parameters , 1982 .

[28]  P. Dawson,et al.  The effective containment of parent ions and daughter ions in triple quadrupoles used for collisional dissociation , 1982 .

[29]  R. Cooks,et al.  Relative gas-phase acidities from triple quadrupole mass spectrometers , 1982 .

[30]  S. Lias,et al.  Discrimination of C3H3+ structures on the basis of chemical reactivity , 1981 .

[31]  J. Beynon,et al.  Comparison of photo-excitation of ions and collisional excitation using gases , 1981 .

[32]  P. Ausloos,et al.  Structures of butyl ions formed by electron impact ionization of isomeric butyl halides and alkanes. [Gamma radiation] , 1978 .

[33]  S. Lias,et al.  An ion cyclotron resonance study of the structures of C7H7+ ions , 1977 .

[34]  P. Dawson Energetics of ions in quadrupole fields , 1976 .

[35]  W. E. Falconer,et al.  Crossed‐molecular‐beam study of the kinematics and dynamics of charge‐transfer collisions , 1974 .

[36]  J. Paulson,et al.  Study of ion—neutral reactions with a time-of-flight double mass spectrometer☆ , 1970 .

[37]  R. Amme,et al.  Ion‐Beam Excitation Effects on the Single Charge Transfer between Argon and Nitrogen , 1965 .

[38]  P. Dawson,et al.  A round robin on the reproducibility of standard operating conditions for the acquisition of library MS/MS spectra using triple quadrupoles , 1984 .

[39]  D. J. Douglas,et al.  The role of kinetic energy in triple quadrupole collision induced dissociation (CID) experiments , 1983 .

[40]  D. J. Douglas Mechanism of the collision-induced dissociation of polyatomic ions studied by triple quadrupole mass spectrometry , 1982 .

[41]  P. Dawson Ion Optical Properties of Quadrupole Mass Filters , 1980 .