An accurate algorithm to calculate the Hurst exponent of self-similar processes

Abstract In this paper, we introduce a new approach which generalizes the GM2 algorithm (introduced in Sanchez-Granero et al. (2008) [52] ) as well as fractal dimension algorithms (FD1, FD2 and FD3) (first appeared in Sanchez-Granero et al. (2012) [51] ), providing an accurate algorithm to calculate the Hurst exponent of self-similar processes. We prove that this algorithm performs properly in the case of short time series when fractional Brownian motions and Levy stable motions are considered. We conclude the paper with a dynamic study of the Hurst exponent evolution in the S&P500 index stocks.

[1]  W. Sharpe Portfolio Theory and Capital Markets , 1970 .

[2]  Modelling stock price movements: multifractality or multifractionality? , 2007 .

[3]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[4]  M. Taqqu,et al.  Estimating long-range dependence in the presence of periodicity: An empirical study , 1999 .

[5]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[6]  H. Stanley,et al.  Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series , 2002, physics/0202070.

[7]  J. R. Wallis,et al.  Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence , 1969 .

[8]  T. D. Matteo,et al.  Multi-scaling in finance , 2007 .

[9]  Stephen F. LeRoy EFFICIENT CAPITAL MARKETS: COMMENT , 1976 .

[10]  Karina Weron,et al.  Enigma of Self-Similarity of Fractional Levy Stable Motions , 2003 .

[11]  F. Modigliani,et al.  CORPORATE INCOME TAXES AND THE COST OF CAPITAL: A CORRECTION , 1963 .

[12]  Atin Das,et al.  Does composite index of NYSE represents chaos in the long time scale? , 2006, Appl. Math. Comput..

[13]  A. Raftery,et al.  Space-time modeling with long-memory dependence: assessing Ireland's wind-power resource. Technical report , 1987 .

[14]  Tomaso Aste,et al.  Scaling behaviors in differently developed markets , 2003 .

[15]  W. Willinger,et al.  ESTIMATORS FOR LONG-RANGE DEPENDENCE: AN EMPIRICAL STUDY , 1995 .

[16]  F. Lillo,et al.  The Long Memory of the Efficient Market , 2003, cond-mat/0311053.

[17]  M. Fernández-Martínez,et al.  A note on geometric method-based procedures to calculate the Hurst exponent , 2012 .

[18]  J. E. Trinidad Segovia,et al.  Measuring the self-similarity exponent in Lévy stable processes of financial time series , 2013 .

[19]  M. Dacorogna,et al.  Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis , 1990 .

[20]  Merton H. Miller The Cost of Capital, Corporation Finance and the Theory of Investment , 1958 .

[21]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[22]  Edgar E. Peters Fractal Market Analysis: Applying Chaos Theory to Investment and Economics , 1994 .

[23]  A. Lo Long-Term Memory in Stock Market Prices , 1989 .

[24]  Edgar E. Peters R/S Analysis Using Logarithmic Returns , 1992 .

[25]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[26]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[27]  Wei-Xing Zhou,et al.  The components of empirical multifractality in financial returns , 2009, 0908.1089.

[28]  R. Weron Estimating long range dependence: finite sample properties and confidence intervals , 2001, cond-mat/0103510.

[29]  M. Marchesi,et al.  Scaling and criticality in a stochastic multi-agent model of a financial market , 1999, Nature.

[30]  Ladislav Kristoufek,et al.  On Hurst exponent estimation under heavy-tailed distributions , 2010, 1201.4786.

[31]  J. E. Trinidad-Segovia,et al.  Introducing fractal dimension algorithms to calculate the Hurst exponent of financial time series , 2012 .

[32]  Vicsek,et al.  Multifractality of self-affine fractals. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[33]  J. Lamperti Semi-stable stochastic processes , 1962 .

[34]  Svetlozar T. Rachev,et al.  Financial market models with Lévy processes and time-varying volatility. , 2008 .

[35]  B. Mandelbrot A Multifractal Walk down Wall Street , 1999 .

[36]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[37]  Walter Willinger,et al.  Stock market prices and long-range dependence , 1999, Finance Stochastics.

[38]  M. T. Greene,et al.  Long-term dependence in common stock returns , 1977 .

[39]  H. Stanley,et al.  Time-dependent Hurst exponent in financial time series , 2004 .

[40]  T. Lux DETECTING MULTIFRACTAL PROPERTIES IN ASSET RETURNS: THE FAILURE OF THE "SCALING ESTIMATOR" , 2004 .

[41]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[42]  E. Panas Estimating fractal dimension using stable distributions and exploring long memory through ARFIMA models in Athens Stock Exchange , 2001 .

[43]  C. Peng,et al.  Mosaic organization of DNA nucleotides. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  B. Malkiel The Ef cient Market Hypothesis and Its Critics , 2003 .

[45]  Laurent E. Calvet,et al.  Multifractality in Asset Returns: Theory and Evidence , 2002, Review of Economics and Statistics.

[46]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[47]  Patrice Abry,et al.  A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.

[48]  A. Carbone,et al.  Second-order moving average and scaling of stochastic time series , 2002 .

[49]  J. E. T. Segovia,et al.  Some comments on Hurst exponent and the long memory processes on capital markets , 2008 .

[50]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[51]  Regime-Switching and the Estimation of Multifractal Processes , 2002 .

[52]  William B. Riley,et al.  Asset Allocation and Individual Risk Aversion , 1992 .

[53]  Ahmed BenSaïda,et al.  Noisy chaos in intraday financial data: Evidence from the American index , 2014, Appl. Math. Comput..