Kinetic description of vacuum e+e− production in strong electric fields of arbitrary polarization

[1]  V. V. Dmitriev,et al.  Kinetics of the vacuum e−e+ plasma in a strong electric field and problem of radiation , 2020 .

[2]  G. Plunien,et al.  Photon emission in strong fields beyond the locally-constant field approximation , 2019, Physical Review D.

[3]  D. Blaschke,et al.  Nonperturbative Kinetic Description of Electron-Hole Excitations in Graphene in a Time Dependent Electric Field of Arbitrary Polarization , 2019, Particles.

[4]  S. O. Pirogov,et al.  Self-consistent kinetic equations for $e^-e^+\gamma$-plasma generated from vacuum by strong electric field , 2019, 1901.02305.

[5]  B. Kämpfer,et al.  Response of the QED(2) vacuum to a quench: Long-term oscillations of the electric field and the pair creation rate , 2018, Plasma Physics and Controlled Fusion.

[6]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[7]  H. Kleinert,et al.  On Electron–Positron Pair Production by a Spatially Inhomogeneous Electric Field , 2018, Physics of Particles and Nuclei.

[8]  B. Xie,et al.  Electron-positron pair production in ultrastrong laser fields , 2017 .

[9]  D. Blaschke,et al.  Particle Production in Strong Time-dependent Fields , 2017, 1704.04147.

[10]  B. Kampfer,et al.  Afterglow of the dynamical Schwinger process: Soft photons amass , 2016, 1611.04438.

[11]  D. Gitman,et al.  Exactly solvable cases in QED with t-electric potential steps , 2015, International Journal of Modern Physics A.

[12]  I. Bialynicki-Birula Relativistic Wigner functions , 2014 .

[13]  V. V. Dmitriev,et al.  BBGKY kinetic approach for an e − e + plasma created from the vacuum in a strong laser-generated electric field: The one-photon annihilation channel , 2011, 1105.5397.

[14]  H. Gies,et al.  Schwinger pair production in space- and time-dependent electric fields: Relating the Wigner formalism to quantum kinetic theory , 2010, 1007.1099.

[15]  R. Moessner,et al.  Nonlinear electric transport in graphene: Quantum quench dynamics and the Schwinger mechanism , 2009, 0909.2528.

[16]  S. Smolyansky,et al.  Kinetics of parton- antiparton plasma vacuum creation in the time - dependent chromo - electric fields of arbitrary polarization , 2009, 0901.0522.

[17]  V. Skokov,et al.  Kinetic description of fermion production in the oscillator representation , 2006, astro-ph/0611780.

[18]  W. Heisenberg,et al.  Consequences of Dirac's theory of positrons , 2006 .

[19]  H. Kroemer The Thomas precession factor in spin–orbit interaction , 2003, physics/0310016.

[20]  S. Smolyansky,et al.  Kinetics of Vacuum Pair Creation in Strong Electromagnetic Fields , 2002, hep-ph/0212200.

[21]  V. Toneev,et al.  Kinetic description of vacuum particle production in collisions of ultrarelativistic nuclei , 2001 .

[22]  S. Smolyansky,et al.  Pair creation: Back reactions and damping , 1999, nucl-th/9907027.

[23]  J. M. Eisenberg,et al.  Quantum Vlasov equation and its Markov limit , 1998, hep-ph/9803372.

[24]  V. Toneev,et al.  Dynamical derivation of a quantum kinetic equation for particle production in the Schwinger mechanism , 1997, hep-ph/9712377.

[25]  Gavrilov,et al.  Vacuum instability in external fields. , 1996, Physical review. D, Particles and fields.

[26]  E. Fradkin,et al.  Quantum electrodynamics with unstable vacuum , 1991 .

[27]  Bialynicki-Birula,et al.  Phase-space structure of the Dirac vacuum. , 1991, Physical review. D, Particles and fields.

[28]  N. N. Bogoliubov,et al.  Introduction to the theory of quantized fields , 1960 .

[29]  Julian Schwinger,et al.  On gauge invariance and vacuum polarization , 1951 .

[30]  K. Haller Quantum Electrodynamics , 1979, Nature.

[31]  E. L. Hill,et al.  The dirac electron theory , 1938 .

[32]  Fritz Sauter,et al.  Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs , 1931 .