A High-Power Broadband Multi-Primary DAT-Based Doherty Power Amplifier for mm-Wave 5G Applications

Silicon-based millimeter-wave (mm-Wave) power amplifiers (PAs) with high power and high peak/back-off efficiency are highly desired to efficiently amplify multi-Gb/s 5G NR signals. This article presents a fully integrated high-power broadband linear Doherty PA with multi-primary distributed-active-transformer (DAT) power combining. We introduce a transformer-based impedance inverter for active load modulation and a multi-primary DAT structure for hybrid series and parallel power combining. Based on this, we propose a transformer-based Doherty combiner with more design freedom and a multi-primary DAT-based Doherty PA for simultaneous active load modulation and low-loss power combining. The EM simulation results demonstrate that the proposed DAT-based Doherty output network achieves very symmetric and balanced load impedances among all the main and auxiliary PA ports. As a proof of concept, a 24–30-GHz prototype PA is implemented in a 0.13-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> SiGe BiCMOS process. The PA achieves 30.4% PAE<sub>max</sub>, 28.3-dBm <inline-formula> <tex-math notation="LaTeX">$P_{\mathrm {sat}}$ </tex-math></inline-formula>, 30.2% PAE at 26.8-dBm <inline-formula> <tex-math notation="LaTeX">$P_{\mathrm {1\,dB}}$ </tex-math></inline-formula>, and 21.2% PAE at 6-dB back-off from <inline-formula> <tex-math notation="LaTeX">$P_{\mathrm {sat}}$ </tex-math></inline-formula> at 28 GHz. Modulation measurement with single-carrier 64-QAM signals and 5G NR FR2 orthogonal frequency-division multiplexing (OFDM) signals has been demonstrated. For a 200-MHz 1-CC 5G NR FR2 64-QAM signal, the PA achieves 18.1-dBm P<sub>avg</sub> and 13.8% PAE<sub>avg</sub> with −25.1-dB rms EVM at 28 GHz.

[1]  Fei Wang,et al.  An N-way transformer based Wilkinson power divider in CMOS , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[2]  Peter M. Asbeck,et al.  Voltage Mode Doherty Power Amplifier , 2017, IEEE Journal of Solid-State Circuits.

[3]  S. Daneshgar,et al.  A 26 dBm 39 GHz Power Amplifier with 26.6% PAE for 5G Applications in 28nm bulk CMOS , 2019, 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[4]  Vladimir Aparin,et al.  A 28GHz Bulk-CMOS dual-polarization phased-array transceiver with 24 channels for 5G user and basestation equipment , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[5]  Ali M. Niknejad,et al.  A digitally modulated mm-Wave cartesian beamforming transmitter with quadrature spatial combining , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[6]  Gabriel M. Rebeiz,et al.  A DC-to-108-GHz CMOS SOI Distributed Power Amplifier and Modulator Driver Leveraging Multi-Drive Complementary Stacked Cells , 2019, IEEE Journal of Solid-State Circuits.

[7]  Narek Rostomyan,et al.  28 GHz Doherty Power Amplifier in CMOS SOI With 28% Back-Off PAE , 2018, IEEE Microwave and Wireless Components Letters.

[8]  Peter M. Asbeck,et al.  Power Amplifiers for mm-Wave 5G Applications: Technology Comparisons and CMOS-SOI Demonstration Circuits , 2019, IEEE Transactions on Microwave Theory and Techniques.

[9]  Kaushik Sengupta,et al.  Frequency Reconfigurable mm-Wave Power Amplifier With Active Impedance Synthesis in an Asymmetrical Non-Isolated Combiner: Analysis and Design , 2017, IEEE Journal of Solid-State Circuits.

[10]  Hua Wang,et al.  Design of A Transformer-Based Reconfigurable Digital Polar Doherty Power Amplifier Fully Integrated in Bulk CMOS , 2015, IEEE Journal of Solid-State Circuits.

[11]  Bumman Kim,et al.  The Doherty Power Amplifier: Review of Recent Solutions and Trends , 2015, IEEE Transactions on Microwave Theory and Techniques.

[12]  Sensen Li,et al.  24.3 A 28GHz Current-Mode Inverse-Outphasing Transmitter Achieving 40%/31% PA Efficiency at Psat/6dB PBO and Supporting 15Gbit/s 64-QAM for 5G Communication , 2020, 2020 IEEE International Solid- State Circuits Conference - (ISSCC).

[13]  F. van Rijs,et al.  A 700-W peak ultra-wideband broadcast Doherty amplifier , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[14]  Zoya Popovic,et al.  ET Comes of Age: Envelope Tracking for Higher-Efficiency Power Amplifiers , 2016, IEEE Microwave Magazine.

[15]  L. Richard Carley,et al.  A 0.7W fully integrated 42GHz power amplifier with 10% PAE in 0.13µm SiGe BiCMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[16]  Hossein Hashemi,et al.  Performance Limits, Design and Implementation of mm-Wave SiGe HBT Class-E and Stacked Class-E Power Amplifiers , 2014, IEEE Journal of Solid-State Circuits.

[17]  James Buckwalter,et al.  A high-efficiency 28GHz outphasing PA with 23dBm output power using a triaxial balun combiner , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[18]  Fei Wang,et al.  An Artificial-Intelligence (AI) Assisted Mm-Wave Doherty Power Amplifier with Rapid Mixed-Mode In-Field Performance Optimization , 2019, 2019 IEEE MTT-S International Microwave Conference on Hardware and Systems for 5G and Beyond (IMC-5G).

[19]  Payam Heydari Neutralization Techniques for High-Frequency Amplifiers: An Overview , 2017, IEEE Solid-State Circuits Magazine.

[20]  Hua Wang,et al.  A Review of Technologies and Design Techniques of Millimeter-Wave Power Amplifiers , 2020, IEEE Transactions on Microwave Theory and Techniques.

[21]  Kaushik Sengupta,et al.  A mm-Wave Segmented Power Mixer , 2015, IEEE Transactions on Microwave Theory and Techniques.

[22]  Kaushik Sengupta,et al.  RF and mm-Wave Power Generation in Silicon , 2015 .

[23]  Hossein Hashemi,et al.  Watt-Level mm-Wave Power Amplification With Dynamic Load Modulation in a SiGe HBT Digital Power Amplifier , 2017, IEEE Journal of Solid-State Circuits.

[24]  Hua Wang,et al.  A Transformer-Based Poly-Phase Network for Ultra-Broadband Quadrature Signal Generation , 2015, IEEE Transactions on Microwave Theory and Techniques.

[25]  Robert Bogdan Staszewski,et al.  Bandwidth Enhancement of GaN MMIC Doherty Power Amplifiers Using Broadband Transformer-Based Load Modulation Network , 2019, IEEE Access.

[26]  Fei Wang,et al.  4.8 A Highly Linear Super-Resolution Mixed-Signal Doherty Power Amplifier for High-Efficiency mm-Wave 5G Multi-Gb/s Communications , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[27]  Hua Wang,et al.  A continuous-mode harmonically tuned 19-to-29.5GHz ultra-linear PA supporting 18Gb/s at 18.4% modulation PAE and 43.5% peak PAE , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[28]  Tso-Wei Li,et al.  A Super-Resolution Mixed-Signal Doherty Power Amplifier for Simultaneous Linearity and Efficiency Enhancement , 2019, IEEE Journal of Solid-State Circuits.

[29]  Patrick Reynaert,et al.  A 60-GHz Outphasing Transmitter in 40-nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[30]  Peter M. Asbeck,et al.  Active Millimeter-Wave Phase-Shift Doherty Power Amplifier in 45-nm SOI CMOS , 2013, IEEE Journal of Solid-State Circuits.

[31]  Hua Wang,et al.  A Coupler-Based Differential Doherty Power Amplifier with Built-In Baluns for High Mm-Wave Linear-Yet-Efficient Gbit/s Amplifications , 2019, 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[32]  Bumman Kim,et al.  Highly Linear mm-Wave CMOS Power Amplifier , 2016, IEEE Transactions on Microwave Theory and Techniques.

[33]  Sherif Shakib,et al.  2.7 A wideband 28GHz power amplifier supporting 8×100MHz carrier aggregation for 5G in 40nm CMOS , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[34]  Fei Wang,et al.  24.1 A 24-to-30GHz Watt-Level Broadband Linear Doherty Power Amplifier with Multi-Primary Distributed-Active-Transformer Power-Combining Supporting 5G NR FR2 64-QAM with >19dBm Average Pout and >19% Average PAE , 2020, 2020 IEEE International Solid- State Circuits Conference - (ISSCC).

[35]  Tso-Wei Li,et al.  Broadband, Linear, and High-Efficiency Mm-Wave PAs in Silicon ― Overcoming Device Limitations by Architecture/Circuit Innovations , 2019, 2019 IEEE MTT-S International Microwave Symposium (IMS).

[36]  Patrick Reynaert,et al.  Transformer-Based Doherty Power Amplifiers for mm-Wave Applications in 40-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[37]  Christian Fager,et al.  Symmetrical Doherty Power Amplifier With Extended Efficiency Range , 2016, IEEE Transactions on Microwave Theory and Techniques.

[38]  Gang Liu,et al.  Fully Integrated CMOS Power Amplifier With Efficiency Enhancement at Power Back-Off , 2008, IEEE Journal of Solid-State Circuits.

[39]  Fei Wang,et al.  Towards Energy-Efficient 5G Mm-Wave links: Exploiting broadband Mm-Wave doherty power amplifier and multi-feed antenna with direct on-antenna power combining , 2017, 2017 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM).

[40]  W.H. Doherty,et al.  A New High Efficiency Power Amplifier for Modulated Waves , 1936, Proceedings of the Institute of Radio Engineers.

[41]  L. Richard Carley,et al.  4.4 A 28/37GHz Scalable, Reconfigurable Multi-Layer Hybrid/Digital MIMO Transceiver for TDD/FDD and Full-Duplex Communication , 2020, 2020 IEEE International Solid- State Circuits Conference - (ISSCC).

[42]  Andrea Bevilacqua Fundamentals of Integrated Transformers: From Principles to Applications , 2020, IEEE Solid-State Circuits Magazine.

[43]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[44]  Kwang-Jin Koh,et al.  Integrated Inverse Class-F Silicon Power Amplifiers for High Power Efficiency at Microwave and mm-Wave , 2016, IEEE Journal of Solid-State Circuits.

[45]  Brian A. Floyd,et al.  A 28-GHz SiGe BiCMOS PA With 32% Efficiency and 23-dBm Output Power , 2017, IEEE Journal of Solid-State Circuits.

[46]  Kenichi Okada,et al.  A 28-GHz CMOS Phased-Array Transceiver Based on LO Phase-Shifting Architecture With Gain Invariant Phase Tuning for 5G New Radio , 2019, IEEE Journal of Solid-State Circuits.

[47]  Peter M. Asbeck,et al.  15 GHz Doherty Power Amplifier With RF Predistortion Linearizer in CMOS SOI , 2018, IEEE Transactions on Microwave Theory and Techniques.

[48]  Fei Wang,et al.  2.1 A 28GHz/37GHz/39GHz multiband linear Doherty power amplifier for 5G massive MIMO applications , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[49]  Meng Li,et al.  Ultra-Wideband Dual-Mode Doherty Power Amplifier Using Reciprocal Gate Bias for 5G Applications , 2019, IEEE Transactions on Microwave Theory and Techniques.

[50]  Andrea Bevilacqua,et al.  Second-Order Equivalent Circuits for the Design of Doubly-Tuned Transformer Matching Networks , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[51]  Ali Hajimiri,et al.  Distributed active transformer-a new power-combining and impedance-transformation technique , 2002 .

[52]  James F. Buckwalter,et al.  A 30-GHz CMOS SOI Outphasing Power Amplifier With Current Mode Combining for High Backoff Efficiency and Constant Envelope Operation , 2020, IEEE Journal of Solid-State Circuits.

[53]  Marco Vigilante,et al.  A Wideband Class-AB Power Amplifier With 29–57-GHz AM–PM Compensation in 0.9-V 28-nm Bulk CMOS , 2018, IEEE Journal of Solid-State Circuits.

[54]  Harish Krishnaswamy,et al.  Large-Scale Power Combining and Mixed-Signal Linearizing Architectures for Watt-Class mmWave CMOS Power Amplifiers , 2015, IEEE Transactions on Microwave Theory and Techniques.

[55]  Fei Wang,et al.  A broadband compact low-loss 4×4 Butler Matrix in CMOS with stacked transformer based quadrature couplers , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[56]  Yun Wang,et al.  A 39-GHz 64-Element Phased-Array Transceiver With Built-In Phase and Amplitude Calibrations for Large-Array 5G NR in 65-nm CMOS , 2020, IEEE Journal of Solid-State Circuits.

[57]  Hua Wang,et al.  4.9 A 60GHz CMOS Power Amplifier with Cascaded Asymmetric Distributed-Active-Transformer Achieving Watt-Level Peak Output Power with 20.8% PAE and Supporting 2Gsym/s 64-QAM Modulation , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[58]  Fei Wang,et al.  24.6 An Instantaneously Broadband Ultra-Compact Highly Linear PA with Compensated Distributed-Balun Output Network Achieving >17.8dBm P1dB and >36.6% PAEP1dB over 24 to 40GHz and Continuously Supporting 64-/256-QAM 5G NR Signals over 24 to 42GHz , 2020, 2020 IEEE International Solid- State Circuits Conference - (ISSCC).

[59]  Sensen Li,et al.  24.2 A Reconfigurable Series/Parallel Quadrature-Coupler-Based Doherty PA in CMOS SOI with VSWR Resilient Linearity and Back-Off PAE for 5G MIMO Arrays , 2020, 2020 IEEE International Solid- State Circuits Conference - (ISSCC).

[60]  J.R. Long,et al.  Monolithic transformers for silicon RF IC design , 2000, IEEE Journal of Solid-State Circuits.

[61]  Fei Wang,et al.  A Full-FoV Autonomous Hybrid Beamformer Array With Unknown Blockers Rejection and Signals Tracking for Low-Latency 5G mm-Wave Links , 2019, IEEE Transactions on Microwave Theory and Techniques.

[62]  Peter M. Asbeck,et al.  Analysis and Design of Stacked-FET Millimeter-Wave Power Amplifiers , 2013, IEEE Transactions on Microwave Theory and Techniques.

[63]  Peter Ashburn,et al.  Silicon‐Germanium Heterojunction Bipolar Transistors , 2004 .

[64]  S. C. Cripps,et al.  RF Power Amplifiers for Wireless Communications , 1999 .

[66]  U.R. Pfeiffer,et al.  A 23-dBm 60-GHz Distributed Active Transformer in a Silicon Process Technology , 2007, IEEE Transactions on Microwave Theory and Techniques.

[67]  Patrick Reynaert,et al.  A 32 GHz 20 dBm-PSAT transformer-based Doherty power amplifier for multi-Gb/s 5G applications in 28 nm bulk CMOS , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[68]  Ingrid Moerman,et al.  A Survey on Hybrid Beamforming Techniques in 5G: Architecture and System Model Perspectives , 2018, IEEE Communications Surveys & Tutorials.

[69]  Gabriel M. Rebeiz,et al.  $Q$-Band Spatially Combined Power Amplifier Arrays in 45-nm CMOS SOI , 2015, IEEE Transactions on Microwave Theory and Techniques.

[70]  C. Weitzel,et al.  RF power amplifiers for wireless communications , 2002, 24th Annual Technical Digest Gallium Arsenide Integrated Circuit (GaAs IC) Symposiu.

[71]  Ali M. Niknejad,et al.  Transformer-Coupled Power Amplifier Stability and Power Back-Off Analysis , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[72]  Fei Wang,et al.  In-Field Performance Optimization for mm-Wave Mixed-Signal Doherty Power Amplifiers: A Bandit Approach , 2020, IEEE Transactions on Circuits and Systems I: Regular Papers.

[73]  Song Hu,et al.  A 28-/37-/39-GHz Linear Doherty Power Amplifier in Silicon for 5G Applications , 2019, IEEE Journal of Solid-State Circuits.

[74]  Peter M. Asbeck,et al.  A 28 GHz Single-Input Linear Chireix (SILC) Power Amplifier in 130 nm SiGe Technology , 2020, IEEE Journal of Solid-State Circuits.

[75]  Sherif Shakib,et al.  A Highly Efficient and Linear Power Amplifier for 28-GHz 5G Phased Array Radios in 28-nm CMOS , 2016, IEEE Journal of Solid-State Circuits.

[76]  Harish Krishnaswamy,et al.  High-Power High-Efficiency Class-E-Like Stacked mmWave PAs in SOI and Bulk CMOS: Theory and Implementation , 2014, IEEE Transactions on Microwave Theory and Techniques.