Numerical modelling and computer simulations

The development of armour materials and systems is a very expensive business, especially when it involves lengthy ballistic trials. Penetration and perforation events are also highly complex and involve competition between alternative failure mechanisms. The physical conditions within an impact zone also vary, with location, in temperature, strain-rate, strain, stress state and pressure. Numerical modelling and computer simulations help understand these complexities and add value to the design process. This chapter describes some of the underpinning principles by covering the range of computer codes available, the types of processors used, and the breadth of both yield strength models and damage criteria which are employed to describe how an armour material flows, fractures and fails. At the end of the chapter, four worked examples illustrate the choices available when modelling armour/anti-armour interactions. The annexures provide excellent sources of data for the various material models and failure criteria.

[1]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[2]  D. Agard,et al.  Microtubule nucleation by γ-tubulin complexes , 2011, Nature Reviews Molecular Cell Biology.

[3]  L. Gibson 3.31 – Properties and Applications of Metallic Foams , 2000 .

[4]  J. Zukas,et al.  Impact Dynamics: Theory and Experiment , 1980 .

[5]  U. F. Kocks,et al.  A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable , 1988 .

[6]  David J. Benson,et al.  Constitutive description of dynamic deformation: physically-based mechanisms , 2002 .

[7]  J. Harding,et al.  Materials Testing for Constitutive relations , 1997 .

[8]  R. Ogden Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  Jonas A. Zukas,et al.  Practical aspects of numerical simulation of dynamic events: material interfaces , 2000 .

[10]  G. R. Johnson,et al.  Numerical algorithms and material models for high-velocity impact computations , 2011 .

[11]  Krzysztof J. Kurzydłowski,et al.  Structure of foams modeled by Laguerre–Voronoi tessellations , 2013 .

[12]  Shaofan Li,et al.  “Smoothed particle hydrodynamics — a meshfree method” , 2004 .

[13]  W. C. Bell,et al.  Filament-Level Modeling of Aramid-Based High-Performance Structural Materials , 2011, Journal of Materials Engineering and Performance.

[14]  Shannon Ryan,et al.  Hypervelocity impact on CFRP: Testing, material modelling, and numerical simulation , 2008 .

[15]  Wallace E. Johnson,et al.  History and application of hydrocodes in hypervelocity impact , 1987 .

[16]  Golam Newaz,et al.  Ductile damage evolution under triaxial state of stress: theory and experiments , 2005 .

[17]  Mhamed Souli,et al.  High explosive simulation using multi-material formulations , 2006 .

[18]  H. Tippur,et al.  Role of cell regularity and relative density on elastoplastic compression response of 3-D open-cell foam core sandwich structure generated using Voronoi diagrams , 2014 .

[19]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[20]  T. Børvik,et al.  Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles , 2009 .

[21]  Jonas A. Zukas,et al.  Practical Aspects of Numerical Simulations of Dynamic Events: Effects of Meshing. , 2000 .

[22]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .

[23]  W. Stumpf,et al.  Fracture and ballistic-induced phase transformation in tempered martensitic low-carbon armour steels , 2006 .

[24]  G. Kerley Multiphase equation of state for iron , 1993 .

[25]  Glenn Randers-Pehrson,et al.  Airblast Loading Model for DYNA2D and DYNA3D. , 1997 .

[26]  G. R. Johnson,et al.  The failed strength of ceramics subjected to high-velocity impact , 2008 .

[27]  T. W. Ipson,et al.  Ballistic Perforation Dynamics , 1963 .

[28]  J. Z. Zhu,et al.  The finite element method , 1977 .

[29]  S. Hiermaier,et al.  A non-linear orthotropic hydrocode model for ultra-high molecular weight polyethylene in impact simulations , 2015 .

[30]  B. M. Dobratz,et al.  LLNL Explosives Handbook, Properties of Chemical Explosives and Explosive Simulants , 1985 .

[31]  M. Ashby The properties of foams and lattices , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  Mica Grujicic,et al.  A ballistic material model for cross-plied unidirectional ultra-high molecular-weight polyethylene fiber-reinforced armor-grade composites , 2008 .

[33]  L. Peroni,et al.  Shock Loads Induced on Metal Structures by LHC Proton Beams: Modelling of Thermo-Mechanical Effects , 2011 .

[34]  N. Fleck,et al.  Isotropic constitutive models for metallic foams , 2000 .

[35]  M. R. Khoshravan,et al.  Numerical and experimental analyses of the effect of different geometrical modelings on predicting compressive strength of honeycomb core , 2014 .

[36]  L. Libersky,et al.  Smoothed Particle Hydrodynamics: Some recent improvements and applications , 1996 .

[37]  G. R. Johnson,et al.  An improved computational constitutive model for brittle materials , 2008 .

[38]  T. Børvik,et al.  A computational model of viscoplasticity and ductile damage for impact and penetration , 2001 .

[39]  S. Dey,et al.  The effect of target strength on the perforation of steel plates using three different projectile nose shapes , 2004 .

[40]  Norman A. Fleck,et al.  Size effects in the constrained deformation of metallic foams , 2002 .

[41]  S. G. Tresvyatskii Dependence of the yield stress of metals on grain size , 1971 .

[42]  Dennis L. Orphal,et al.  Explosions and impacts , 2006 .

[43]  Gang Chen,et al.  Deformation and Failure Modes of Soft Steel Projectiles Impacting Harder Steel Targets at Increasing Velocity , 2008 .

[44]  Heiko Andrä,et al.  Laguerre tessellations for elastic stiffness simulations of closed foams with strongly varying cell sizes , 2012 .

[45]  T. Wierzbicki,et al.  Evaluation of six fracture models in high velocity perforation , 2006 .

[46]  J. Lemaître,et al.  Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures , 2005 .

[47]  B. Gu,et al.  Strain rate effects of tensile behaviors of 3-D orthogonal woven fabric: Experimental and finite element analyses , 2013 .

[48]  Ala Tabiei,et al.  Ballistic Impact of Dry Woven Fabric Composites: A Review , 2008 .

[49]  J. A. Zukas,et al.  Some common problems in the numerical modeling of impact phenomena , 1993 .

[50]  Mustafa Güden,et al.  Crushing of aluminum closed cell foams: density and strain rate effects , 2000 .

[51]  G. Lu,et al.  Strength enhancement of aluminium foams and honeycombs by entrapped air under dynamic loadings , 2014 .

[52]  Tuan Ngo,et al.  Influences of weaving architectures on the impact resistance of multi-layer fabrics , 2015 .

[53]  George Z. Voyiadjis,et al.  A consistent modified Zerilli-Armstrong flow stress model for BCC and FCC metals for elevated temperatures , 2005 .

[54]  P. Cloetens,et al.  X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems , 2003 .

[55]  H. Schreyer,et al.  ANISOTROPIC PLASTICITY MODEL FOR FOAMS AND HONEYCOMBS , 1994 .

[56]  Charles E. Anderson,et al.  An overview of the theory of hydrocodes , 1987 .

[57]  John Ockendon,et al.  Applied Solid Mechanics , 2009 .

[58]  D. Amodio,et al.  Material characterization at high strain rate by Hopkinson bar tests and finite element optimization , 2008 .

[59]  Nik Petrinic,et al.  Modelling Stochastic Foam Geometries for FE Simulations Using 3D Voronoi Cells , 2014 .

[60]  John W. Gillespie,et al.  Multiscale modeling of the impact of textile fabrics based on hybrid element analysis , 2010 .

[61]  P. Hazell,et al.  A study of the penetration behaviour of mild-steel-cored ammunition against boron carbide ceramic armours , 2015 .

[62]  R. Rivlin Large elastic deformations of isotropic materials IV. further developments of the general theory , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[63]  Tuan Ngo,et al.  Strain rate dependent constitutive model for predicting the material behaviour of polyurea under high strain rate tensile loading , 2014 .

[64]  Y. Lin,et al.  A critical review of experimental results and constitutive descriptions for metals and alloys in hot working , 2011 .

[65]  Jonas A. Zukas,et al.  Introduction to Hydrocodes , 2004 .

[66]  Shun-Chin Chou,et al.  Application of the Depth-of-Penetration Test Methodology to Characterize Ceramics for Personnel Protection , 2000 .

[67]  S. Im,et al.  Finite element simulation of the plastic collapse of closed-cell aluminum foams with X-ray computed tomography , 2010 .

[68]  Tuğrul Özel,et al.  Identification of Constitutive Material Model Parameters for High-Strain Rate Metal Cutting Conditions Using Evolutionary Computational Algorithms , 2007 .

[69]  O. Hopperstad,et al.  Validation of constitutive models applicable to aluminium foams , 2002 .

[70]  K. G. Hoge,et al.  The temperature and strain rate dependence of the flow stress of tantalum , 1977 .

[71]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[72]  Han Zhao,et al.  An experimental study on the behaviour under impact loading of metallic cellular materials , 2005 .

[73]  H. Meyer,et al.  A Modified Zerilli-Armstrong Constitutive Model Describing the Strength and Localizing Behavior of Ti-6A1-4V , 2006 .

[74]  Martin W. Heinstein,et al.  An analysis of smoothed particle hydrodynamics , 1994 .

[75]  John Hetherington,et al.  Blast and ballistic loading of structures , 1994 .

[76]  Woei-Shyan Lee,et al.  The plastic deformation behaviour of AISI 4340 alloy steel subjected to high temperature and high strain rate loading conditions , 1997 .

[77]  M. Souli,et al.  ALE formulation for fluid–structure interaction problems , 2000 .

[78]  P. C. Souers,et al.  Detonation equation of state at LLNL, 1993 , 1994 .

[79]  E. Maire,et al.  Finite element modelling of the actual structure of cellular materials determined by X-ray tomography , 2005 .

[80]  R. Armstrong,et al.  Dislocation mechanics aspects of plastic instability and shear banding , 1994 .

[81]  Trenton Kirchdoerfer,et al.  Modeling and validation of full fabric targets under ballistic impact , 2010 .

[82]  S. Marsh Lasl Shock Hugoniot Data , 1980 .

[83]  Mica Grujicic,et al.  Development and verification of a meso-scale based dynamic material model for plain-woven single-ply ballistic fabric , 2008, Journal of Materials Science.

[84]  A. Rusinek,et al.  Modelling of thermo-viscoplastic behaviour of DH-36 and Weldox 460-E structural steels at wide ranges of strain rates and temperatures, comparison of constitutive relations for impact problems , 2009 .

[85]  Rodney S. Thomson,et al.  Review of methodologies for composite material modelling incorporating failure , 2008 .

[86]  N. Fleck,et al.  High strain rate compressive behaviour of aluminium alloy foams , 2000 .

[87]  M. Ashby,et al.  Metal Foams: A Design Guide , 2000 .

[88]  Tore Børvik,et al.  On the influence of fracture criterion in projectile impact of steel plates , 2006 .

[89]  John Banhart,et al.  Porous Metals and Metallic Foams: Current Status and Recent Developments , 2008 .

[90]  Emad Gad,et al.  A numerical simulation of the blast impact of square metallic sandwich panels , 2009 .

[91]  G. R. Johnson,et al.  Response of aluminum nitride (including a phase change) to large strains, high strain rates, and high pressures , 2003 .

[92]  A. C. Mackenzie,et al.  On the influence of state of stress on ductile failure initiation in high strength steels , 1977 .

[93]  C. M. Lund,et al.  A constitutive model for strain rates from 10−4 to 106 s−1 , 1989 .

[94]  Rebecca M. Brannon,et al.  KAYENTA : theory and user's guide. , 2009 .

[95]  T. Børvik,et al.  On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part I. Experiments , 2003 .

[96]  Tuan Ngo,et al.  Impact Resistance and Failure Analysis of Plain Woven Curtains , 2015 .

[97]  Charles E. Anderson,et al.  Ballistic impact: the status of analytical and numerical modeling , 1988 .

[98]  S. Ahzi,et al.  Influence of the material constitutive models on the adiabatic shear band spacing: MTS, power law and Johnson¿Cook models , 2004 .

[99]  Yaodong Liu,et al.  A numerical study on the rate sensitivity of cellular metals , 2009 .

[100]  Michael Brünig,et al.  A ductile damage criterion at various stress triaxialities , 2008 .

[101]  H. Meyer,et al.  Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration , 2001 .

[102]  N. Fleck,et al.  The Resistance of Clamped Sandwich Beams to Shock Loading , 2004 .

[103]  W. Benz Smooth Particle Hydrodynamics: A Review , 1990 .

[104]  Jonas A. Zukas,et al.  High velocity impact dynamics , 1990 .

[105]  Michael Saleh,et al.  Evaluation of soil and fluid structure interaction in blast modelling of the flying plate test , 2015 .

[106]  Ahmed K. Noor,et al.  Structural analysis of the adhesive bond in a honeycomb core sandwich panel , 1997 .

[107]  Marc A. Meyers,et al.  DYNAMIC RECRYSTALLIZATION IN HIGH-STRAIN, HIGH-STRAIN-RATE PLASTIC DEFORMATION OF COPPER , 1994 .

[108]  Vladimir Luzin,et al.  Response of thin-skinned sandwich panels to contact loading with flat-ended cylindrical punches: Experiments, numerical simulations and neutron diffraction measurements , 2015 .

[109]  V.P.W. Shim,et al.  Effect of strain rate on microstructure of polycrystalline oxygen-free high conductivity copper severely deformed at liquid nitrogen temperature , 2010 .

[110]  Ahmed Benallal,et al.  Flow and fracture characteristics of aluminium alloy AA5083–H116 as function of strain rate, temperature and triaxiality , 2004 .

[111]  Tomasz Wierzbicki,et al.  On the cut-off value of negative triaxiality for fracture , 2005 .

[112]  Odd Sture Hopperstad,et al.  Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses: Part II: numerical simulations , 2002 .

[113]  James A. Nemes,et al.  Modeling of ductile fracture using the dynamic punch test , 2005 .

[114]  Ronald E. Miller A continuum plasticity model for the constitutive and indentation behaviour of foamed metals , 2000 .

[115]  John W. Gillespie,et al.  Ballistic impact modeling of woven fabrics considering yarn strength, friction, projectile impact location, and fabric boundary condition effects , 2012 .

[116]  M. Grujicic,et al.  A comparative investigation of the use of laminate-level meso-scale and fracture-mechanics-enriched meso-scale composite-material models in ballistic-resistance analyses , 2010 .

[117]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[118]  F. Allahdadi,et al.  A Quadratic Yield Function for Fiber-Reinforced Composites , 1997 .

[119]  D. Steinberg,et al.  A constitutive model for metals applicable at high-strain rate , 1980 .

[120]  Tuan Ngo,et al.  Effects of architecture on ballistic resistance of textile fabrics: Numerical study , 2014 .

[121]  Ronald W. Armstrong,et al.  Description of tantalum deformation behavior by dislocation mechanics based constitutive relations , 1990 .

[122]  John W. Gillespie,et al.  On the finite element analysis of woven fabric impact using multiscale modeling techniques , 2010 .

[123]  R. Armstrong,et al.  Dislocation-mechanics-based constitutive relations for material dynamics calculations , 1987 .

[124]  G. R. Johnson,et al.  DETERMINATION OF CONSTANTS AND COMPARISON OF RESULTS FOR VARIOUS CONSTITUTIVE MODELS , 1991 .

[125]  Mica Grujicic,et al.  A Meso-Scale Unit-Cell Based Material Model for the Single-Ply Flexible-Fabric Armor , 2009 .

[126]  Marc A. Meyers,et al.  Shock Waves and High-Strain-Rate Phenomena in Metals. Concepts and Applications. , 1981 .

[127]  E. B. Royce GRAY, A THREE-PHASE EQUATION OF STATE FOR METALS. , 1971 .

[128]  Mica Grujicic,et al.  Multi-Scale Ballistic Material Modeling of Cross-Plied Compliant Composites , 2009 .

[129]  R. Armstrong,et al.  Constitutive relations for titanium and Ti-6Al-4V , 2008 .

[130]  B. Boyce,et al.  The dynamic tensile behavior of tough, ultrahigh-strength steels at strain-rates from 0.0002 s−1 to 200 s−1 ☆ , 2009 .

[131]  William P. Walters,et al.  Explosive effects and applications , 1998 .

[132]  Whirley DYNA3D: A nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics , 1993 .

[133]  Akhtar S. Khan,et al.  A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures , 1999 .

[134]  E. Lee,et al.  JWL equation of state coefficients for high explosives , 1973 .

[135]  G. Mirone,et al.  Role of stress triaxiality in elastoplastic characterization and ductile failure prediction , 2007 .

[136]  S. Nemat-Nasser,et al.  Comparison between high and low strain-rate deformation of tantalum , 2000 .

[137]  J. D. Campbell,et al.  The temperature and strain-rate dependence of the shear strength of mild steel , 1970 .

[138]  Zocher,et al.  AN EVALUATION OF SEVERAL HARDENING MODELS USING TAYLOR CYLINDER IMPACT DATA , 2000 .

[139]  E. A. Flores-Johnson,et al.  Ballistic performance of multi-layered metallic plates impacted by a 7.62-mm APM2 projectile , 2011 .

[140]  M. S. Chafi,et al.  Numerical analysis of blast-induced wave propagation using FSI and ALEmulti-material formulations , 2009 .

[141]  Xitao Wang,et al.  A modified Zerilli–Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel , 2014 .

[142]  S. Ryan,et al.  A methodology for hydrocode analysis of ultra-high molecular weight polyethylene composite under ballistic impact , 2016 .

[143]  B. Banerjee,et al.  AN EXTENDED MECHANICAL THRESHOLD STRESS PLASTICITY MODEL: MODELING 6061-T6 ALUMINUM ALLOY , 2008 .

[144]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[145]  Rebecca M. Brannon,et al.  The Use of Sphere Indentation Experiments to Characterize Ceramic Damage Models , 2010 .

[146]  N. Petrinic,et al.  Introduction to computational plasticity , 2005 .

[147]  Hilary Bart-Smith,et al.  Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping , 1998 .

[148]  Roberto Montanini,et al.  Measurement of strain rate sensitivity of aluminium foams for energy dissipation , 2005 .

[149]  Xin Li,et al.  Dynamic behavior of aluminum honeycomb sandwich panels under air blast: Experiment and numerical analysis , 2014 .

[150]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[151]  Paul S. Follansbee,et al.  An analysis of the low temperature, low and high strain-rate deformation of Ti−6Al−4V , 1989 .

[152]  Lyndon Edwards,et al.  Numerical FE modelling of occupant injury in soil-vehicle blast interaction , 2014 .