Investigation of Microstructures and Fatigue Properties of Friction Stir Welded Al-Mg Alloy

Abstract FS welds have a sound joint for the lack of voids, cracks and distortions. When compared to the base material, friction stir welding (FSW) joints exhibit a finer crystal grain in the weld nugget, and advancing side has a clearer boundary with the weld nugget than that of the retreating side. The fatigue life of FS welds is 6–14 times longer than that of MIG-pulse welds under the stress ratio R  = 0.1 and the calculated fatigue characteristic values of each weld increase from 42.32 MPa for MIG to 68.47 MPa for FSW at 2 × 10 6 cycles. In the high-cycle regime, the fatigue strength of the FSW joint is almost equivalent to that of the base material. The fatigue fracture of FSW revealed regions of crack initiation, stable crack growth and overload.

[1]  S. Park,et al.  Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys , 2001 .

[2]  Rajiv S. Mishra,et al.  Microstructural investigation of friction stir welded 7050-T651 aluminium , 2003 .

[3]  Hiroyuki Kokawa,et al.  Microstructural evolution of 6063 aluminum during friction-stir welding , 1999 .

[4]  Murray W. Mahoney,et al.  Effects of friction stir welding on microstructure of 7075 aluminum , 1997 .

[5]  Timothy Russell Gurney,et al.  Fatigue of Welded Structures , 1980 .

[6]  E. Evangelista,et al.  TEM analysis of a friction stir-welded butt joint of Al–Si–Mg alloys , 2003 .

[7]  P. Peyre,et al.  Reduction of porosity content generated during Nd:YAG laser welding of A356 and AA5083 aluminium alloys , 2003 .

[8]  Joseph R. Davis,et al.  Special Features of Structure Formation and Properties of Special High-Alloy Alloys of the Al – Si – Cu System , 2023, Metal Science and Heat Treatment.

[9]  M. Preuss,et al.  Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds , 2003 .

[10]  L. Murr,et al.  Low-Temperature Friction-Stir Welding of 2024 Aluminum , 1999 .

[11]  S. L. Semiatin,et al.  Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys , 2000 .

[12]  E. A. Starke,et al.  Overview no. 102 Theory assisted design of high strength low alloy aluminum , 1993 .

[13]  H. Salem Friction stir weld evolution of dynamically recrystallized AA 2095 weldments , 2003 .

[14]  Kumar V. Jata,et al.  Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451 , 2000 .

[15]  Lawrence E Murr,et al.  A TEM study of precipitation and related microstructures in friction-stir-welded 6061 aluminium , 1998 .

[16]  Michael A. Sutton,et al.  Banded Microstructure in AA2024-T351 and AA2524-T351 Aluminum Friction Stir Welds: Part I. Metallurgical Studies , 2004 .

[17]  Michael A. Sutton,et al.  A Study of Residual Stresses and Microstructure in 2024-T3 Aluminum Friction Stir Butt Welds , 2002 .

[18]  H. Kokawa,et al.  Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum , 2001 .

[19]  L. Murr,et al.  Dynamic recrystallization in friction-stir welding of aluminium alloy 1100 , 1997 .

[20]  A. Vasudévan,et al.  Grain boundary ductile fracture in precipitation hardened aluminum alloys , 1987 .

[21]  Hiroyuki Kokawa,et al.  Precipitation sequence in friction stir weld of 6063 aluminum during aging , 1999 .

[22]  C. Donne,et al.  TEM study of the microstructure evolution in a friction stir-welded AlCuMgAg alloy , 2003 .

[23]  M. W. Mahoney,et al.  Properties of friction-stir-welded 7075 T651 aluminum , 1998 .

[24]  T. Srivatsan An investigation of the cyclic fatigue and fracture behavior of aluminum alloy 7055 , 2002 .

[25]  S. J. Maddox,et al.  Review of fatigue assessment procedures for welded aluminium structures , 2003 .

[26]  Robert L. Taylor,et al.  Microstructural studies of friction stir welds in 2024-T3 aluminum , 2002 .

[27]  Lawrence E Murr,et al.  Microstructural issues in a friction-stir-welded aluminum alloy , 1998 .