Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles

Abstract Improved optical absorption and photocurrent for polythiophene–fullerene bulk heterojunction photovoltaic devices is demonstrated using a unique self-assembled monolayer of Ag nanoparticles formed from a colloidal solution. With the presence of suitable nanoparticle organic capping groups that inhibit its propensity to agglomerate, the particle-to-particle spacing can be tailored. Transmission electron microscopy reveals the self-assembled Ag nanospheres are highly uniform with an average diameter of ∼4 nm and controllable particle-to-particle spacing. The localized surface plasmon resonance peak is ∼465 nm with a narrow full width at half maximum (95 nm). In the spectral range of 350–650 nm, where the organic bulk heterojunction photoactive film absorbs, an enhanced optical absorption is observed due to the increased electric field in the photoactive layer by excited localized surface plasmons within the Ag nanospheres. Under the short-circuit condition, the induced photo-current efficiency (IPCE) measurement demonstrates that the maximum IPCE increased to ∼51.6% at 500 nm for the experimental devices with the self-assembled layer of Ag nanoparticles, while the IPCE of the reference devices without the plasmon-active Ag nanoparticles is ∼45.7% at 480 nm. For the experimental devices under air mass 1.5 global filtered illuminations with incident intensity of 100 mW/cm2, the increased short-circuit current density is observed due to the enhancement of the photogeneration of excitons near the plasmon resonance of the Ag nanoparticles.

[1]  Shijun Jia,et al.  Erratum to: “Large-area organic photovoltaic module—Fabrication and performance” [Sol. Energy Mater. Sol. Cells 93 (2009) 442–446] , 2009 .

[2]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[3]  A. Polman Plasmonic Solar Cells , 2010 .

[4]  F. Krebs,et al.  A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies , 2009 .

[5]  Kyung-Young Jung,et al.  Multispecies ADI-FDTD Algorithm for Nanoscale Three-Dimensional Photonic Metallic Structures , 2007, IEEE Photonics Technology Letters.

[6]  J. Mugnier,et al.  Strong coupling between surface plasmons and excitons in an organic semiconductor. , 2004, Physical review letters.

[7]  Thomas H. Reilly,et al.  Erratum: ``Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics'' [Appl. Phys. Lett. 92, 013504 (2008)] , 2008 .

[8]  Gang Li,et al.  Accurate Measurement and Characterization of Organic Solar Cells , 2006 .

[9]  Gang Xu,et al.  Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films , 2003 .

[10]  Naomi J. Halas,et al.  Optimized plasmonic nanoparticle distributions for solar spectrum harvesting , 2006 .

[11]  Helmut Neugebauer,et al.  Flexible, long-lived, large-area, organic solar cells , 2007 .

[12]  David R. Smith,et al.  Shape effects in plasmon resonance of individual colloidal silver nanoparticles , 2002 .

[13]  C. Borczyskowski,et al.  Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters , 1995 .

[14]  Dieter Meissner,et al.  Metal cluster enhanced organic solar cells , 2000 .

[15]  Alex K.-Y. Jen,et al.  Spraycoating of silver nanoparticle electrodes for inverted polymer solar cells , 2009 .

[16]  Carl Hägglund,et al.  Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons , 2008 .

[17]  Thomas H. Reilly,et al.  Surface-plasmon enhanced transparent electrodes in organic photovoltaics , 2008 .

[18]  I. Sosa,et al.  Optical Properties of Metal Nanoparticles with Arbitrary Shapes , 2003, cond-mat/0304216.

[19]  Shijun Jia,et al.  Large-area organic photovoltaic module—Fabrication and performance , 2009 .

[20]  Sang-Hyun Oh,et al.  Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells , 2008, LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[21]  Kyung-Young Jung,et al.  $\hbox{Au/SiO}_{2}$ Nanoring Plasmon Waveguides at Optical Communication Band , 2007, Journal of Lightwave Technology.

[22]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[23]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  N. Halas,et al.  Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode. , 2008, Nano letters.

[26]  A. Burger,et al.  Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes , 2007 .

[27]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[28]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[29]  Jonathan K. Mapel,et al.  Plasmonic excitation of organic double heterostructure solar cells , 2007 .

[30]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[31]  Royer,et al.  Substrate effects on surface-plasmon spectra in metal-island films. , 1987, Physical review. B, Condensed matter.

[32]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[33]  Ole Hagemann,et al.  A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration , 2009 .

[34]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[35]  S. Hayashi,et al.  Enhancement of photoelectric conversion efficiency by surface plasmon excitation : a test with an organic solar cell , 1991 .

[36]  Thomas H. Reilly,et al.  Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics , 2008 .

[37]  M. Pileni,et al.  Synthesis of Highly Monodisperse Silver Nanoparticles from AOT Reverse Micelles: A Way to 2D and 3D Self-Organization , 1997 .

[38]  Paul R. Berger,et al.  Surface modification to the indium tin oxide (ITO) anodes through plasma oxidized silver for efficient P3HT:PCBM (1:0.8) bulk heterojunction photovoltaic devices , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[39]  Hannes Schache,et al.  Reel-to-reel wet coating as an efficient up-scaling technique for the production of bulk-heterojunction polymer solar cells , 2009 .

[40]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[41]  Christophe Petit,et al.  Optical Properties of Self-Assembled 2D and 3D Superlattices of Silver Nanoparticles , 1998 .

[42]  Paul R. Berger,et al.  4.8% efficient poly(3-hexylthiophene)-fullerene derivative (1:0.8) bulk heterojunction photovoltaic devices with plasma treated AgOx/indium tin oxide anode modification , 2008 .