Interval scheduling: A survey

In interval scheduling, not only the processing times of the jobs but also their starting times are given. This article surveys the area of interval scheduling and presents proofs of results that have been known within the community for some time. We first review the complexity and approximability of different variants of interval scheduling problems. Next, we motivate the relevance of interval scheduling problems by providing an overview of applications that have appeared in literature. Finally, we focus on algorithmic results for two important variants of interval scheduling problems. In one variant we deal with nonidentical machines: instead of each machine being continuously available, there is a given interval for each machine in which it is available. In another variant, the machines are continuously available but they are ordered, and each job has a given "maximal" machine on which it can be processed. We investigate the complexity of these problems and describe algorithms for their solution.

[1]  Matteo Fischetti,et al.  The Fixed Job Schedule Problem with Working-Time Constraints , 1989, Oper. Res..

[2]  Khalid Ibn El Walid Bouzina On interval scheduling problems: A contribution , 1994 .

[3]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[4]  Leo G. Kroon,et al.  The Optimal Cost Chromatic Partition Problem for Trees and Interval Graphs , 1996, WG.

[5]  Matteo Fischetti,et al.  The Fixed Job Schedule Problem with Spread-Time Constraints , 1987, Oper. Res..

[6]  Peter Brucker,et al.  Thek-track assignment problem , 1994, Computing.

[7]  Toshihide Ibaraki,et al.  Resource allocation problems - algorithmic approaches , 1988, MIT Press series in the foundations of computing.

[8]  J. Mark Keil,et al.  On the complexity of scheduling tasks with discrete starting times , 1992, Oper. Res. Lett..

[9]  Leo G. Kroon,et al.  Exact and Approximation Algorithms for the Tactical Fixed Interval Scheduling Problem , 1997, Oper. Res..

[10]  John E. Beasley,et al.  A dynamic programming based algorithm for the crew scheduling problem , 1998, Comput. Oper. Res..

[11]  F. Spieksma,et al.  A branch‐and‐price algorithm for a hierarchical crew scheduling problem , 2002 .

[12]  Sudipto Guha,et al.  Approximating the Throughput of Multiple Machines in Real-Time Scheduling , 2002, SIAM J. Comput..

[13]  Matteo Fischetti,et al.  Approximation Algorithms for Fixed Job Schedule Problems , 1992, Oper. Res..

[14]  Piotr Berman,et al.  Multi-phase Algorithms for Throughput Maximization for Real-Time Scheduling , 2000, J. Comb. Optim..

[15]  Ulrich Faigle,et al.  A Greedy On-Line Algorithm for thek-Track Assignment Problem , 1999, J. Algorithms.

[16]  Leo Kroon,et al.  On the computational complexity of (maximum) class scheduling , 1991 .

[17]  Sudipto Guha,et al.  Machine minimization for scheduling jobs with interval constraints , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[18]  Virginie Gabrel,et al.  Scheduling jobs within time windows on identical parallel machines: New model and algorithms , 1995 .

[19]  Barry O'Neill,et al.  Games of Boldness, Where the Player Performing the Hardest Task Wins , 1992, Oper. Res..

[20]  Marco A. Boschetti,et al.  A Set Partitioning Approach to the Crew Scheduling Problem , 1999, Oper. Res..

[21]  Akihiro Hashimoto,et al.  Wire routing by optimizing channel assignment within large apertures , 1971, DAC.

[22]  Paolo Toth,et al.  A heuristic approach to the bus driver scheduling problem , 1986 .

[23]  Esther M. Arkin,et al.  Scheduling jobs with fixed start and end times , 1987, Discret. Appl. Math..

[24]  Chris N. Potts,et al.  Scheduling with Fixed Delivery Dates , 2001, Oper. Res..

[25]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[26]  Jiri Sgall,et al.  On-line scheduling --- a survey , 1997 .

[27]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[28]  Graham K. Rand,et al.  Logistics of Production and Inventory , 1995 .

[29]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[30]  D. R. Fulkerson,et al.  MINIMIZING THE NUMBER OF CARRIERS TO MEET A FIXED SCHEDULE , 1954 .

[31]  Joseph Y.-T. Leung,et al.  An Optimal Solution for the Channel-Assignment Problem , 1979, IEEE Transactions on Computers.

[32]  Jan Karel Lenstra,et al.  Complexity Results for Scheduling Tasks in Fixed Intervals on Two Types of Machines , 1982, SIAM J. Comput..

[33]  Steven S. Seiden,et al.  Randomized online interval scheduling , 1998, Oper. Res. Lett..

[34]  Richard J. Enbody,et al.  Optimal replacement is NP-hard for nonstandard caches , 2004, IEEE Transactions on Computers.

[35]  N. S. Barnett,et al.  Private communication , 1969 .

[36]  F. Spieksma On the approximability of an interval scheduling problem , 1999 .

[37]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[38]  Vijay Kumar,et al.  Approximating Circular Arc Colouring and Bandwidth Allocation in All-Optical Ring Networks , 1998, APPROX.

[39]  Ulrich Faigle,et al.  Note on Scheduling Intervals on-line , 1995, Discret. Appl. Math..

[40]  Thomas Erlebach,et al.  An Improved Randomized On-Line Algorithm for a Weighted Interval Selection Problem , 2004, J. Sched..

[41]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[42]  Hamilton Emmons,et al.  Fixed Job Scheduling with Two Types of Processors , 1992, Oper. Res..

[43]  Leo Kroon,et al.  Exact and approximation algorithms for the operational fixed interval scheduling problem , 1995 .

[44]  L. G. Kroon,et al.  On the computational complexity of (maximum) shift class scheduling , 1991 .

[45]  Randeep Bhatia,et al.  Algorithmic Aspects of Bandwidth Trading , 2003, ICALP.

[46]  Helman Stern,et al.  Minimal Resources for Fixed and Variable Job Schedules , 1978, Oper. Res..

[47]  Thomas Erlebach,et al.  Scheduling with Release Times and Deadlines on a Minimum Number of Machines , 2004, IFIP TCS.

[48]  Frits C. R. Spieksma,et al.  Interval selection: Applications, algorithms, and lower bounds , 2003, J. Algorithms.

[49]  Antoon W.J. Kolen,et al.  An analysis of shift class design problems , 1994 .

[50]  Sandy Irani,et al.  Bounding the power of preemption in randomized scheduling , 1995, STOC '95.

[51]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[52]  Hamilton Emmons,et al.  Interval Scheduling on identical machines , 1996, J. Glob. Optim..

[53]  Zsolt Tuza,et al.  Precoloring extension. I. Interval graphs , 1992, Discret. Math..

[54]  Sartaj Sahni,et al.  Parallel Scheduling Algorithms , 1983, Oper. Res..

[55]  Richard J. Lipton,et al.  Online interval scheduling , 1994, SODA '94.

[56]  Gerhard J. Woeginger,et al.  On-Line Scheduling of Jobs with Fixed Start and End Times , 1994, Theor. Comput. Sci..

[57]  Reuven Bar-Yehuda,et al.  A unified approach to approximating resource allocation and scheduling , 2000, STOC '00.

[58]  Jirí Sgall,et al.  On-line Scheduling , 1996, Online Algorithms.

[59]  Gary L. Miller,et al.  The Complexity of Coloring Circular Arcs and Chords , 1980, SIAM J. Algebraic Discret. Methods.

[60]  Hamilton Emmons,et al.  Algorithms for preemptive scheduling of different classes of processors to do jobs with fixed times , 1993 .

[61]  S. Louis Hakimi,et al.  Complexity Results for Scheduling Tasks with Discrete Starting Times , 1982, J. Algorithms.

[62]  Klaus Jansen,et al.  An approximation algorithm for the license and shift class design problem , 1994 .

[63]  Errol L. Lloyd,et al.  Cost Constrained Fixed Job Scheduling , 2003, ICTCS.

[64]  Klaus Jansen,et al.  Approximation Results for the Optimum Cost Chromatic Partition Problem , 1997, J. Algorithms.

[65]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[66]  Errol L. Lloyd,et al.  on the K-coloring of Intervals , 1991, Discrete Applied Mathematics.

[67]  Rafail Ostrovsky,et al.  Approximation algorithms for the job interval selection problem and related scheduling problems , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[68]  Ran Canetti,et al.  Bandwidth Allocation with Preemption , 1999, SIAM J. Comput..

[69]  Michael W. Carter,et al.  When Is the Classroom Assignment Problem Hard? , 1992, Oper. Res..

[70]  Yiannis Gabriel,et al.  Logistics of Production and Inventory , 1993, Handbooks in Operations Research and Management Science.

[71]  Frits C. R. Spieksma,et al.  Interval selection: applications, algorithms and lower bounds , 2002 .

[72]  Zhi-Zhong Chen,et al.  More Reliable Protein NMR Peak Assignment via Improved 2-Interval Scheduling , 2005, J. Comput. Biol..

[73]  I. Gertsbach,et al.  Constructing an Optimal Fleet for a Transportation Schedule , 1977 .

[74]  Subhash Suri,et al.  Online Scheduling with Hard Deadlines , 2000, J. Algorithms.

[75]  Jan Karel Lenstra,et al.  Combinatorics in operations research , 1996 .

[76]  J. M. Anthonisse,et al.  Operational operations research at the Mathematical Centre , 1984 .