Cucurbit[n]uril Supramolecular Hydrogel Networks as Tough and Healable Adhesives

[1]  Xuanhe Zhao,et al.  Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures , 2016, Nature Communications.

[2]  Xuanhe Zhao,et al.  Tough Bonding of Hydrogels to Diverse Nonporous Surfaces , 2015, Nature materials.

[3]  Akira Harada,et al.  Preorganized Hydrogel: Self‐Healing Properties of Supramolecular Hydrogels Formed by Polymerization of Host–Guest‐Monomers that Contain Cyclodextrins and Hydrophobic Guest Groups , 2013, Advanced materials.

[4]  Russell J Stewart,et al.  Natural Underwater Adhesives. , 2011, Journal of polymer science. Part B, Polymer physics.

[5]  Nan Li,et al.  Tough Supramolecular Polymer Networks with Extreme Stretchability and Fast Room‐Temperature Self‐Healing , 2017, Advanced materials.

[6]  O. Scherman,et al.  The control of cargo release from physically crosslinked hydrogels by crosslink dynamics. , 2014, Biomaterials.

[7]  Mary M. Caruso,et al.  Adhesion promotion via noncovalent interactions in self-healing polymers. , 2011, ACS applied materials & interfaces.

[8]  T. Kurokawa,et al.  Formation of a strong hydrogel-porous solid interface via the double-network principle. , 2010, Acta biomaterialia.

[9]  Ji Liu,et al.  Aqueous Polymer Self‐Assembly Based on Cucurbit[n]uril‐Mediated Host‐Guest Interactions , 2016 .

[10]  Y. Lan,et al.  Toward a versatile toolbox for cucurbit[n]uril‐based supramolecular hydrogel networks through in situ polymerization , 2017, Journal of polymer science. Part A, Polymer chemistry.

[11]  C. Weder,et al.  Light-induced bonding and debonding with supramolecular adhesives. , 2014, ACS applied materials & interfaces.

[12]  S. Pensec,et al.  Supramolecular Soft Adhesive Materials , 2010 .

[13]  A. Geim,et al.  Microfabricated adhesive mimicking gecko foot-hair , 2003, Nature materials.

[14]  Emma-Rose Janeček,et al.  Natural polymers as alternative consolidants for the preservation of waterlogged archaeological wood , 2017 .

[15]  Ji Liu,et al.  Supramolecular polymer networks based on cucurbit[8]uril host–guest interactions as aqueous photo-rheological fluids , 2015 .

[16]  J. Waite,et al.  Mini-review: The role of redox in Dopa-mediated marine adhesion , 2012, Biofouling.

[17]  Christoph Weder,et al.  Supramolecular polymer adhesives: advanced materials inspired by nature. , 2016, Chemical Society reviews.

[18]  David J. Mooney,et al.  Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation , 2015, Nature materials.

[19]  Feng Zhou,et al.  Bio-inspired reversible underwater adhesive , 2017, Nature Communications.

[20]  Oren A Scherman,et al.  Sustained release of proteins from high water content supramolecular polymer hydrogels. , 2012, Biomaterials.

[21]  Jian Ping Gong,et al.  Double‐Network Hydrogels Strongly Bondable to Bones by Spontaneous Osteogenesis Penetration , 2016, Advanced materials.

[22]  Qin Zhang,et al.  Bioinspired Adhesive Hydrogels Tackified by Nucleobases , 2017 .

[23]  Jonathan J. Wilker,et al.  Simplified Polymer Mimics of Cross-Linking Adhesive Proteins , 2007 .

[24]  Alexandros Koutsioubas,et al.  Multifunctional supramolecular polymer networks as next-generation consolidants for archaeological wood conservation , 2014, Proceedings of the National Academy of Sciences.

[25]  James D. White,et al.  Underwater Bonding with Charged Polymer Mimics of Marine Mussel Adhesive Proteins , 2011 .

[26]  D J Mooney,et al.  Tough adhesives for diverse wet surfaces , 2017, Science.

[27]  B Kollbe Ahn,et al.  High-performance mussel-inspired adhesives of reduced complexity , 2015, Nature Communications.

[28]  S. Zimmerman,et al.  Quadruply hydrogen bonding modules as highly selective nanoscale adhesive agents. , 2013, Organic letters.

[29]  Hui Shao,et al.  Biomimetic Underwater Adhesives with Environmentally Triggered Setting Mechanisms , 2010, Advanced materials.

[30]  Wantai Yang,et al.  Macroscopic Supramolecular Assembly of Rigid Building Blocks Through a Flexible Spacing Coating , 2014, Advanced materials.

[31]  Yang Lan,et al.  Cucurbit[n]uril-Based Microcapsules Self-Assembled within Microfluidic Droplets: A Versatile Approach for Supramolecular Architectures and Materials , 2017, Accounts of chemical research.

[32]  Y. Takashima,et al.  A metal–ion-responsive adhesive material via switching of molecular recognition properties , 2014, Nature Communications.

[33]  Yu,et al.  Synthetic Polypeptide Mimics of Marine Adhesives. , 1998, Macromolecules.

[34]  Ludwik Leibler,et al.  Organ Repair, Hemostasis, and In Vivo Bonding of Medical Devices by Aqueous Solutions of Nanoparticles** , 2014, Angewandte Chemie.

[35]  Rui L Reis,et al.  Natural‐Based Nanocomposites for Bone Tissue Engineering and Regenerative Medicine: A Review , 2015, Advanced materials.

[36]  Amanda R. Jones,et al.  High-affinity DNA base analogs as supramolecular, nanoscale promoters of macroscopic adhesion. , 2013, Journal of the American Chemical Society.

[37]  Bruce P. Lee,et al.  Mussel-Inspired Adhesives and Coatings. , 2011, Annual review of materials research.

[38]  K. Messner,et al.  The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment , 1998, Journal of anatomy.

[39]  C. Abell,et al.  Biomimetic Supramolecular Polymer Networks Exhibiting both Toughness and Self‐Recovery , 2017, Advanced materials.

[40]  L. Leibler,et al.  Nanoparticle solutions as adhesives for gels and biological tissues , 2013, Nature.

[41]  J. Voskuhl,et al.  Supramolecular surface adhesion mediated by azobenzene polymer brushes. , 2016, Chemical communications.