New Structured Matrix Methods for Real and Complex Polynomial Root-finding ∗

We combine the known methods for univariate polynomial root-finding and for computations in the Frobenius matrix algebra with our novel techniques to advance numerical solution of a univariate polynomial equation, and in particular numerical approximation of the real roots of a polynomial. Our analysis and experiments show efficiency of the resulting algorithms.

[1]  V. Pan,et al.  TR-2012013: Condition Numbers of Random Toeplitz and Circulant Matrices , 2012, 1212.4551.

[2]  V. Pan The amended DSeSC power method for polynomial root-finding , 2005 .

[3]  Bernard Mourrain,et al.  Real Algebraic Numbers: Complexity Analysis and Experimentation , 2008, Reliable Implementation of Real Number Algorithms.

[4]  David S. Watkins,et al.  The matrix eigenvalue problem - GR and Krylov subspace methods , 2007 .

[5]  J. McNamee A 2002 update of the supplementary bibliography on roots of polynomials , 2002 .

[6]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[7]  Chee-Keng Yap,et al.  Almost tight recursion tree bounds for the Descartes method , 2006, ISSAC '06.

[8]  Victor Y. Pan Solving Polynomials with Computers , 1998 .

[9]  Victor Y. Pan,et al.  New progress in real and complex polynomial root-finding , 2011, Comput. Math. Appl..

[10]  Arnold Schönhage,et al.  The fundamental theorem of algebra in terms of computational complexity - preliminary report , 1982 .

[11]  A. Householder Generalizations of an algorithm of Sebastião e Silva , 1971 .

[12]  J. Pier Development of mathematics , 1994 .

[13]  Jim Euchner Design , 2014, Catalysis from A to Z.

[14]  B. Parlett Laguerre's Method Applied to the Matrix Eigenvalue Problem , 1964 .

[15]  Victor Y. Pan,et al.  Univariate polynomials: nearly optimal algorithms for factorization and rootfinding , 2001, ISSAC '01.

[16]  C. Pan On the existence and computation of rank-revealing LU factorizations , 2000 .

[17]  On smallest isolated gerschgorin disks for eigenvalues , 1965 .

[18]  C. Pan,et al.  Rank-Revealing QR Factorizations and the Singular Value Decomposition , 1992 .

[19]  Giuseppe Fiorentino,et al.  Design, analysis, and implementation of a multiprecision polynomial rootfinder , 2000, Numerical Algorithms.

[20]  V. Pan,et al.  Matrix computations and polynomial root-finding with preprocessing☆ , 2011 .

[21]  Victor Y. Pan,et al.  Solving a Polynomial Equation: Some History and Recent Progress , 1997, SIAM Rev..

[22]  M. Mahoney,et al.  History of Mathematics , 1924, Nature.

[23]  Victor Y. Pan,et al.  Numerical methods for roots of polynomials , 2007 .

[24]  J. Hubbard,et al.  How to find all roots of complex polynomials by Newton’s method , 2001 .

[25]  I. Emiris,et al.  Real Algebraic Numbers: Complexity Analysis and Experimentations , 2008 .

[26]  Qiang Du,et al.  The quasi-Laguerre iteration , 1997, Math. Comput..

[27]  Gene H. Golub,et al.  Matrix computations , 1983 .

[28]  V. Pan Structured Matrices and Polynomials , 2001 .

[29]  G. Stewart On the Convergence of Sebastião E. Silva's Method for Finding a Zero of a Polynomial , 1970 .

[30]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[31]  Victor Y. Pan,et al.  Approximating Complex Polynomial Zeros: Modified Weyl's Quadtree Construction and Improved Newton's Iteration , 2000, J. Complex..

[32]  Chee-Keng Yap,et al.  A simple but exact and efficient algorithm for complex root isolation , 2011, ISSAC '11.

[33]  Xiulin Zou Analysis of the quasi-Laguerre method , 1999, Numerische Mathematik.

[34]  J. Levesley Functions of matrices: Theory and computation , 2009 .

[35]  Ioannis Z. Emiris,et al.  Univariate Polynomial Real Root Isolation: Continued Fractions Revisited , 2006, ESA.

[36]  Victor Y. Pan,et al.  Estimating the Norms of Random Circulant and Toeplitz Matrices and Their Inverses , 2013 .

[37]  A. U.S.,et al.  The Amended DSeSC Power Method for Polynomial Root-Finding , 2004 .

[38]  V. Pan Optimal and nearly optimal algorithms for approximating polynomial zeros , 1996 .

[39]  Khaled Omrani,et al.  A 2002 update of the supplementary bibliography on roots of polynomials , 2002 .

[40]  V. Pan Structured Matrices and Polynomials: Unified Superfast Algorithms , 2001 .

[41]  Bernard Mourrain,et al.  Experimental evaluation and cross-benchmarking of univariate real solvers , 2009, SNC '09.

[42]  Raf Vandebril,et al.  Fast Computation of the Zeros of a Polynomial via Factorization of the Companion Matrix , 2013, SIAM J. Sci. Comput..

[43]  Victor Y. Pan,et al.  On the boolean complexity of real root refinement , 2013, ISSAC '13.

[44]  V. Pan,et al.  Improved initialization of the accelerated and robust QR-like polynomial root-finding. , 2004 .

[45]  V. Pan,et al.  Inverse power and Durand-Kerner iterations for univariate polynomial root-finding , 2002 .

[46]  Dario Bini,et al.  ON THE SHIFTED QR ITERATION APPLIED TO COMPANION MATRICES , 2004 .

[47]  Kurt Mehlhorn,et al.  A deterministic algorithm for isolating real roots of a real polynomial , 2011, J. Symb. Comput..

[48]  E. Hansen,et al.  Some modifications of Laguerre's method , 1977 .

[49]  Peter Kirrinnis,et al.  Partial Fraction Decomposition in (z) and Simultaneous Newton Iteration for Factorization in C[z] , 1998, J. Complex..

[50]  Victor Y. Pan,et al.  Optimal (up to polylog factors) sequential and parallel algorithms for approximating complex polynomial zeros , 1995, STOC '95.

[51]  R. Varga,et al.  On smallest isolated gerschgorin disks for eigenvalues. III , 1968 .

[52]  P. ZHLOBICH Differential qd Algorithm with Shifts for Rank-Structured Matrices , 2012, SIAM J. Matrix Anal. Appl..

[53]  R. L. Johnston Gerschgorin theorems for partitioned matrices , 1971 .

[54]  Gregorio Malajovich,et al.  On the Geometry of Graeffe Iteration , 2001, J. Complex..

[55]  Victor Y. Pan,et al.  Graeffe's, Chebyshev-like, and Cardinal's Processes for Splitting a Polynomial into Factors , 1996, J. Complex..

[56]  Paul Van Dooren,et al.  Implicit double shift QR-algorithm for companion matrices , 2010, Numerische Mathematik.

[57]  David S. Watkins,et al.  Fundamentals of matrix computations , 1991 .

[58]  R. Varga Minimal Gerschgorin Sets for Partitioned Matrices , 1970 .

[59]  Qiang Du,et al.  Quasi-Laguerre Iteration in Solving Symmetric Tridiagonal Eigenvalue Problems , 1996, SIAM J. Sci. Comput..

[60]  Dario Bini,et al.  Numerical computation of polynomial zeros by means of Aberth's method , 1996, Numerical Algorithms.