Evolutionary divergence in the fungal response to fluconazole revealed by soft clustering

[1]  Anne E Carpenter,et al.  Genetic Architecture of Hsp90-Dependent Drug Resistance , 2006, Eukaryotic Cell.

[2]  Michelle S. Scott,et al.  Chemogenomic profiling predicts antifungal synergies , 2009, Molecular systems biology.

[3]  A. Parsons,et al.  Mode of selection and experimental evolution of antifungal drug resistance in Saccharomyces cerevisiae. , 2003, Genetics.

[4]  M. Bolotin-Fukuhara,et al.  Genomics and Biodiversity in Yeasts , 2006 .

[5]  David James Sherman,et al.  Génolevures: protein families and synteny among complete hemiascomycetous yeast proteomes and genomes , 2008, Nucleic Acids Res..

[6]  Sven Bergmann,et al.  Rewiring of the Yeast Transcriptional Network Through the Evolution of Motif Usage , 2005, Science.

[7]  T. Edlind,et al.  Azole Resistance in Candida glabrata: Coordinate Upregulation of Multidrug Transporters and Evidence for a Pdr1-Like Transcription Factor , 2004, Antimicrobial Agents and Chemotherapy.

[8]  T. C. White,et al.  Effects of Azole Antifungal Drugs on the Transition from Yeast Cells to Hyphae in Susceptible and Resistant Isolates of the Pathogenic Yeast Candida albicans , 1999, Antimicrobial Agents and Chemotherapy.

[9]  A. Tinkelenberg,et al.  Transcriptional Profiling Identifies Two Members of the ATP-binding Cassette Transporter Superfamily Required for Sterol Uptake in Yeast* , 2002, The Journal of Biological Chemistry.

[10]  Ziv Bar-Joseph,et al.  Cross species analysis of microarray expression data , 2009, Bioinform..

[11]  Aaron Golden,et al.  Transcription factor binding site identification using the self-organizing map , 2005, Bioinform..

[12]  S. Tenreiro,et al.  Expression of the AZR1 gene (ORF YGR224w), encoding a plasma membrane transporter of the major facilitator superfamily, is required for adaptation to acetic acid and resistance to azoles in Saccharomyces cerevisiae , 2000, Yeast.

[13]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[14]  W. Weger,et al.  A 5‐year (2000–2004) epidemiological survey of Candida and non‐Candida yeast species causing vulvovaginal candidiasis in Graz, Austria , 2006, Mycoses.

[15]  J. Rine,et al.  Comprehensive evaluation of isoprenoid biosynthesis regulation in Saccharomyces cerevisiae utilizing the Genome Reporter Matrix. , 1999, Journal of lipid research.

[16]  D. Andes,et al.  Time Course of Microbiologic Outcome and Gene Expression in Candida albicans during and following In Vitro and In Vivo Exposure to Fluconazole , 2006, Antimicrobial Agents and Chemotherapy.

[17]  Alexander E. Kel,et al.  TRANSFAC®: transcriptional regulation, from patterns to profiles , 2003, Nucleic Acids Res..

[18]  Thierry Ferreira,et al.  SUT1-promoted sterol uptake involves the ABC transporter Aus1 and the mannoprotein Dan1 whose synergistic action is sufficient for this process. , 2004, The Biochemical journal.

[19]  J. Rine,et al.  A Role for Sterol Levels in Oxygen Sensing in Saccharomyces cerevisiae , 2006, Genetics.

[20]  Gary D. Stormo,et al.  Identifying DNA and protein patterns with statistically significant alignments of multiple sequences , 1999, Bioinform..

[21]  M. Eisen,et al.  Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering , 2002, Genome Biology.

[22]  D. Botstein,et al.  Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Ronald W. Davis,et al.  Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  S. Bergmann,et al.  Comparative Gene Expression Analysis by a Differential Clustering Approach: Application to the Candida albicans Transcription Program , 2005, PLoS genetics.

[25]  Inmar E. Givoni,et al.  Exploring the Mode-of-Action of Bioactive Compounds by Chemical-Genetic Profiling in Yeast , 2006, Cell.

[26]  Midori A. Harris,et al.  The Gene Ontology project , 2005 .

[27]  S. Lindquist,et al.  Hsp90 Potentiates the Rapid Evolution of New Traits: Drug Resistance in Diverse Fungi , 2005, Science.

[28]  Trey Ideker,et al.  Correcting for gene-specific dye bias in DNA microarrays using the method of maximum likelihood , 2008, Bioinform..

[29]  G. Fadda,et al.  The ATP‐binding cassette transporter–encoding gene CgSNQ2 is contributing to the CgPDR1‐dependent azole resistance of Candida glabrata , 2008, Molecular microbiology.

[30]  Gang Liu,et al.  Automatic clustering of orthologs and inparalogs shared by multiple proteomes , 2006, ISMB.

[31]  C. Rosa,et al.  Biodiversity and ecophysiology of yeasts , 2006 .

[32]  L. Cowen,et al.  The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype , 2008, Nature Reviews Microbiology.

[33]  James B. Anderson Evolution of antifungal-drug resistance: mechanisms and pathogen fitness , 2005, Nature Reviews Microbiology.

[34]  M. Pfaller,et al.  Twelve years of fluconazole in clinical practice: global trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida. , 2004, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[35]  J. Cleary,et al.  Genome-wide Expression Profiling of the Response to Polyene, Pyrimidine, Azole, and Echinocandin Antifungal Agents in Saccharomyces cerevisiae* , 2003, Journal of Biological Chemistry.

[36]  A. Regev,et al.  Conservation and evolvability in regulatory networks: the evolution of ribosomal regulation in yeast. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  H. Steensma,et al.  Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. , 2006, FEMS yeast research.

[38]  Concetta Compagno,et al.  Fermentative lifestyle in yeasts belonging to the Saccharomyces complex , 2007, The FEBS journal.

[39]  G. Andrés,et al.  Antifúngicos: mecanismo de acción en células de levaduras , 2006 .

[40]  G. Fadda,et al.  Mechanisms of Azole Resistance in Clinical Isolates of Candida glabrata Collected during a Hospital Survey of Antifungal Resistance , 2005, Antimicrobial Agents and Chemotherapy.

[41]  Manuel A. S. Santos,et al.  Evolution of pathogenicity and sexual reproduction in eight Candida genomes , 2009, Nature.

[42]  D. Sanglard,et al.  The ATP Binding Cassette Transporter GeneCgCDR1 from Candida glabrata Is Involved in the Resistance of Clinical Isolates to Azole Antifungal Agents , 1999, Antimicrobial Agents and Chemotherapy.

[43]  Dat H. Nguyen,et al.  Deciphering principles of transcription regulation in eukaryotic genomes , 2006, Molecular systems biology.

[44]  J. Morschhäuser Regulation of multidrug resistance in pathogenic fungi. , 2010, Fungal genetics and biology : FG & B.

[45]  M. Bolotin-Fukuhara,et al.  The Kluyveromyces lactis repertoire of transcriptional regulators. , 2006, FEMS yeast research.

[46]  Daniel E. Newburger,et al.  High-resolution DNA-binding specificity analysis of yeast transcription factors. , 2009, Genome research.

[47]  S. Tenreiro,et al.  FLR1 gene (ORF YBR008c) is required for benomyl and methotrexate resistance in Saccharomyces cerevisiae and its benomyl‐induced expression is dependent on Pdr3 transcriptional regulator , 1999, Yeast.

[48]  Arindam Banerjee,et al.  Active Semi-Supervision for Pairwise Constrained Clustering , 2004, SDM.

[49]  J. Maertens,et al.  History of the development of azole derivatives. , 2004, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[50]  Hao Li,et al.  The Evolution of Combinatorial Gene Regulation in Fungi , 2008, PLoS biology.

[51]  J. Beney,et al.  The direct cost and incidence of systemic fungal infections. , 2002, Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research.

[52]  Ziv Bar-Joseph,et al.  Clustering short time series gene expression data , 2005, ISMB.

[53]  Matthias E. Futschik,et al.  Noise-robust Soft Clustering of Gene Expression Time-course Data , 2005, J. Bioinform. Comput. Biol..

[54]  J. Berman,et al.  Aneuploidy and Isochromosome Formation in Drug-Resistant Candida albicans , 2006, Science.

[55]  Trey Ideker,et al.  Damage recovery pathways in Saccharomyces cerevisiae revealed by genomic phenotyping and interactome mapping. , 2002, Molecular cancer research : MCR.

[56]  B. Dujon,et al.  Genome evolution in yeasts , 2004, Nature.

[57]  J. Fostel,et al.  Genome-Wide Expression Patterns inSaccharomyces cerevisiae: Comparison of Drug Treatments and Genetic Alterations Affecting Biosynthesis of Ergosterol , 2000, Antimicrobial Agents and Chemotherapy.

[58]  L. Cowen,et al.  Stress, Drugs, and Evolution: the Role of Cellular Signaling in Fungal Drug Resistance � , 2022 .

[59]  N. Friedman,et al.  Natural history and evolutionary principles of gene duplication in fungi , 2007, Nature.

[60]  Wilfred W. Li,et al.  MEME: discovering and analyzing DNA and protein sequence motifs , 2006, Nucleic Acids Res..

[61]  R. Homayouni,et al.  Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome‐wide expression studies , 2006, Molecular microbiology.

[62]  Hironobu Nakayama,et al.  The Candida glabrata putative sterol transporter gene CgAUS1 protects cells against azoles in the presence of serum. , 2007, The Journal of antimicrobial chemotherapy.

[63]  D. Kontoyiannis Efflux-mediated resistance to fluconazole could be modulated by sterol homeostasis in Saccharomyces cerevisiae. , 2000, The Journal of antimicrobial chemotherapy.

[64]  T. C. White,et al.  Role of Candida albicans Transcription Factor Upc2p in Drug Resistance and Sterol Metabolism , 2004, Eukaryotic Cell.

[65]  G. Church,et al.  Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. , 2000, Journal of molecular biology.

[66]  Ting Wang,et al.  An improved map of conserved regulatory sites for Saccharomyces cerevisiae , 2006, BMC Bioinformatics.

[67]  S. Kelly,et al.  Molecular basis of resistance to azole antifungals. , 2002, Trends in molecular medicine.

[68]  Giorgio Valle,et al.  The Gene Ontology project in 2008 , 2007, Nucleic Acids Res..

[69]  Graziano Pesole,et al.  An algorithm for finding signals of unknown length in DNA sequences , 2001, ISMB.

[70]  K. Barker,et al.  Identification of genes differentially expressed in association with reduced azole susceptibility in Saccharomyces cerevisiae. , 2003, The Journal of antimicrobial chemotherapy.

[71]  Jun Cai,et al.  Modeling Co-Expression across Species for Complex Traits: Insights to the Difference of Human and Mouse Embryonic Stem Cells , 2010, PLoS Comput. Biol..

[72]  Russ B. Altman,et al.  Missing value estimation methods for DNA microarrays , 2001, Bioinform..

[73]  G. Quindós,et al.  Antifungal agents: mode of action in yeast cells. , 2006, Revista espanola de quimioterapia : publicacion oficial de la Sociedad Espanola de Quimioterapia.

[74]  J. Mccusker,et al.  Cryptococcus neoformans methionine synthase: expression analysis and requirement for virulence. , 2004, Microbiology.

[75]  Catherine Etchebest,et al.  Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata , 2008, Genome Biology.

[76]  Dibyendu Banerjee,et al.  Responses of Pathogenic and Nonpathogenic Yeast Species to Steroids Reveal the Functioning and Evolution of Multidrug Resistance Transcriptional Networks , 2007, Eukaryotic Cell.

[77]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Dominique Sanglard,et al.  Resistance of human fungal pathogens to antifungal drugs. , 2002, Current opinion in microbiology.