Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy.

Defects are known to affect nanoscale phase transitions, but their specific role in the metal-to-insulator transition in VO(2) has remained elusive. By combining plasmon resonance nanospectroscopy with density functional calculations, we correlate decreased phase-transition energy with oxygen vacancies created by strain at grain boundaries. By measuring the degree of metallization in the lithographically defined VO(2) nanoparticles, we find that hysteresis width narrows with increasing size, thus illustrating the potential for domain boundary engineering in phase-changing nanostructures.

[1]  S. Maier,et al.  Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide. , 2010, Optics letters.

[2]  Kannatassen Appavoo,et al.  Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial. , 2011, Nano letters.

[3]  T. Haugan,et al.  Effect of a compressive uniaxial strain on the critical current density of grain boundaries in superconducting YBa2Cu3O7-delta films. , 2009, Physical review letters.

[4]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[5]  Ramamoorthy Ramesh,et al.  Large kinetic asymmetry in the metal-insulator transition nucleated at localized and extended defects , 2011 .

[6]  L. Feldman,et al.  Size-dependent optical properties of VO2 nanoparticle arrays. , 2004, Physical review letters.

[7]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[8]  Nikolay I. Zheludev All change, please , 2007 .

[9]  A. Maiti,et al.  Damage nucleation and vacancy-induced structural transformation in Si grain boundaries , 1999 .

[10]  G. Schatz,et al.  The Extinction Spectra of Silver Nanoparticle Arrays: Influence of Array Structure on Plasmon Resonance Wavelength and Width† , 2003 .

[11]  J. Buban,et al.  Enhanced current transport at grain boundaries in high-T c superconductors , 2005, Nature.

[12]  W. W. Milligan,et al.  Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films , 1995 .

[13]  Sergei V. Kalinin,et al.  Symmetry relationship and strain-induced transitions between insulating M1 and M2 and metallic R phases of vanadium dioxide. , 2010, Nano letters.

[14]  Rene Lopez,et al.  Size effects in the structural phase transition of VO2 nanoparticles , 2002 .

[15]  S. Pantelides,et al.  Strain enhanced defect reactivity at grain boundaries in polycrystalline graphene , 2011 .

[16]  William T. Lee,et al.  Trapping of oxygen vacancies in the twin walls of perovskite , 2010 .

[17]  R. F. Haglund,et al.  Ultrafast insulator-metal phase transition in VO 2 studied by multiterahertz spectroscopy , 2011, 1104.2984.

[18]  Richard F. Haglund,et al.  Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films , 2004 .

[19]  Hidekazu Tanaka,et al.  Interface effect on metal-insulator transition of strained vanadium dioxide ultrathin films , 2007 .

[20]  S. D. Conte,et al.  Ultrafast insulator-to-metal phase transition as a switch to measure the spectrogram of a supercontinuum light pulse , 2009, 0910.3785.

[21]  J. C. Kieffer,et al.  Evidence for a structurally-driven insulator-to-metal transition in VO 2 : A view from the ultrafast timescale , 2004, cond-mat/0403214.

[22]  A I Lichtenstein,et al.  Dynamical singlets and correlation-assisted Peierls transition in VO2. , 2005, Physical review letters.

[23]  Volker Eyert The metal-insulator transitions of VO2: A band theoretical approach , 2002 .

[24]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[25]  S. Wolf,et al.  The metal-insulator transition in vanadium dioxide: A view at bulk and surface contributions for thin films and the effect of annealing , 2009 .

[26]  S. Ramanathan,et al.  Geometric confinement effects on the metal-insulator transition temperature and stress relaxation in VO2 thin films grown on silicon , 2011 .

[27]  Gyungock Kim,et al.  Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices , 2004 .

[28]  Sergei V. Kalinin,et al.  Mesoscopic metal-insulator transition at ferroelastic domain walls in VO2. , 2010, ACS nano.

[29]  S. Ramanathan,et al.  Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions , 2011 .

[30]  L. Feldman,et al.  Size effects in the structural phase transition of VO2 nanoparticles studied by surface-enhanced Raman scattering , 2009 .

[31]  D. N. Basov,et al.  Nanoscale imaging of the electronic and structural transitions in vanadium dioxide , 2011 .

[32]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[33]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[34]  M. Rozenberg,et al.  Two-dimensional electron gas with universal subbands at the surface of SrTiO3 , 2010, Nature.

[35]  J. Narayan,et al.  Role of twin boundaries in semiconductor to metal transition characteristics of VO2 films , 2010 .

[36]  Hyun-Tak Kim,et al.  Observation of Mott Transition in VO_2 Based Transistors , 2003 .

[37]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[38]  P Fons,et al.  Interfacial phase-change memory. , 2011, Nature nanotechnology.

[39]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[40]  L. Feldman,et al.  Confocal Raman microscopy across the metal-insulator transition of single vanadium dioxide nanoparticles. , 2009, Nano letters.

[41]  F. J. Morin,et al.  Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature , 1959 .

[42]  C. N. Berglund,et al.  Optical Properties of V O 2 between 0.25 and 5 eV , 1968 .