Superconvergence Analysis and PPR Recovery of Arbitrary Order Edge Elements for Maxwell’s Equations

In this article, we propose a practical scheme for constructing global superconvergent approximations for Maxwell’s equations in both two and three dimensions. Superconvergence of order $$O(h^{p+1})$$O(hp+1) is established in a discrete norm. This superconvergence result, combined with the polynomial-preserving recovery postprocessing technique, leads to global superconvergence of order $$O(h^{p+1})$$O(hp+1) for recovered quantities in energy norms. Numerical experiments are provided to confirm our theoretical findings.

[1]  Ahmed Naga,et al.  THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .

[2]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[3]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[5]  Brendan Keith,et al.  Orientation embedded high order shape functions for the exact sequence elements of all shapes , 2015, Comput. Math. Appl..

[6]  Peter Monk,et al.  Superconvergence of finite element approximations to Maxwell's equations , 1994 .

[7]  Zhang Zhimin,et al.  Superconvergence of Discontinuous Galerkin method for linear hyperbolic equations , 2013, 1311.6938.

[8]  Hong Yan,et al.  Computing the p-Spectral Radii of Uniform Hypergraphs with Applications , 2017, Journal of Scientific Computing.

[9]  Waixiang Cao,et al.  Superconvergence of Discontinuous Galerkin Methods for Linear Hyperbolic Equations , 2013, SIAM J. Numer. Anal..

[10]  Zhimin Zhang,et al.  A Recovery Based Linear Finite Element Method For 1D Bi-Harmonic Problems , 2016, J. Sci. Comput..

[11]  Chao Wu,et al.  Superconvergence Analysis for Linear Tetrahedral Edge Elements , 2015, J. Sci. Comput..

[12]  Yunqing Huang,et al.  Superconvergence analysis for time‐dependent Maxwell's equations in metamaterials , 2012 .

[13]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[14]  Zhimin Zhang,et al.  Finite element superconvergence approximation for one‐dimensional singularly perturbed problems , 2002 .

[15]  Ivo Babuška,et al.  Computer‐based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations , 1996 .

[16]  Zhimin Zhang,et al.  Superconvergence Analysis of High-Order Rectangular Edge Elements for Time-Harmonic Maxwell’s Equations , 2018, J. Sci. Comput..

[17]  Peter Monk,et al.  A finite element method for approximating the time-harmonic Maxwell equations , 1992 .

[18]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[19]  Waixiang Cao,et al.  Superconvergence of Discontinuous Galerkin Methods for Two-Dimensional Hyperbolic Equations , 2015, SIAM J. Numer. Anal..

[20]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[21]  Wei Yang,et al.  Superconvergence of mixed finite element approximations to 3-D Maxwell's equations in metamaterials , 2011, J. Comput. Phys..

[22]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[23]  Yunqing Huang,et al.  Averaging for superconvergence: Verification and application of 2D edge elements to Maxwell’s equations in metamaterials☆ , 2013 .

[24]  Zhimin Zhang,et al.  A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..