Principles of leaky-mode photonic lattices: band flips and Bloch mode dynamics

We present principles of leaky-mode photonic lattices explaining key properties enabling potential device applications. The one-dimensional grating-type canonical model is rich in properties and conceptually transparent encompassing all essential attributes applicable to two-dimensional metasurfaces and periodic photonic slabs. We address the operative physical mechanisms grounded in lateral leaky Bloch mode resonance emphasizing the significant influence imparted by the periodicity and the waveguide characteristics of the lattice. The effects discussed are not explainable in terms of local Fabry-Perot or Mie resonances. In particular, herein, we summarize the band dynamics of the leaky stopband revealing principal Bragg diffraction processes responsible for band-gap size and band closure conditions. We review Bloch wave vector control of spectral characteristics in terms of distinct evanescent diffraction channels driving designated Bloch modes in the lattice.

[1]  Zhi-Gang Yu,et al.  Perfect dielectric-metamaterial reflector , 2013 .

[2]  R. Magnusson,et al.  Resonant leaky-mode spectral-band engineering and device applications. , 2004, Optics express.

[3]  Robert Magnusson,et al.  Ultra-sparse dielectric nanowire grids as wideband reflectors and polarizers. , 2015, Optics express.

[4]  P. Vincent,et al.  Corrugated dielectric waveguides: A numerical study of the second-order stop bands , 1979 .

[5]  S. S. Wang,et al.  Theory and applications of guided-mode resonance filters. , 1993, Applied optics.

[6]  R. Magnusson,et al.  Doubly resonant single-layer bandpass optical filters. , 2004, Optics letters.

[7]  G. Michael Morris,et al.  Resonant scattering from two-dimensional gratings , 1996 .

[8]  Robert Magnusson,et al.  Single-layer optical bandpass filter technology. , 2015, Optics letters.

[9]  J. Hou,et al.  A broadband reflector using a multilayered grating structure with multi-subpart profile , 2010 .

[10]  Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  R. Magnusson,et al.  Band gaps and leaky-wave effects in resonant photonic-crystal waveguides. , 2007, Optics express.

[12]  Ivan Avrutsky,et al.  Reflection of a beam of finite size from a corrugated waveguide , 1989 .

[13]  R. Magnusson,et al.  Properties of wideband resonant reflectors under fully conical light incidence. , 2016, Optics express.

[14]  C. Chang-Hasnain,et al.  Ultrabroadband mirror using low-index cladded subwavelength grating , 2004, IEEE Photonics Technology Letters.

[15]  R. F. Kazarinov,et al.  Second-order distributed feedback lasers with mode selection provided by first-order radiation losses , 1985 .

[16]  Yeshaiahu Fainman,et al.  Lasing action from photonic bound states in continuum , 2017, Nature.

[17]  A. Borisov,et al.  Bound States in the continuum in photonics. , 2008, Physical review letters.

[18]  Robert Magnusson,et al.  Resonant wideband polarizer with single silicon layer , 2011 .

[19]  Robert Magnusson,et al.  Guided-mode resonances in planar dielectric-layer diffraction gratings , 1990 .

[20]  Daniel Maystre,et al.  Theoretical Study of the Anomalies of Coated Dielectric Gratings , 1986 .

[21]  R. Magnusson,et al.  Experimental demonstration of wideband multimodule serial reflectors. , 2017, Optics express.

[22]  Ye Feng Yu,et al.  High‐transmission dielectric metasurface with 2π phase control at visible wavelengths , 2015 .

[23]  Robert Magnusson,et al.  Wideband reflectors with zero-contrast gratings. , 2014, Optics letters.

[24]  Theodor Tamir,et al.  Resonant scattering by multilayered dielectric gratings , 1997 .

[25]  Vladimir A. Sychugov,et al.  LETTERS TO THE EDITOR: Total reflection of light from a corrugated surface of a dielectric waveguide , 1985 .

[26]  L. Torner,et al.  Anisotropy-induced photonic bound states in the continuum , 2017, Nature Photonics.

[27]  Marin Soljacic,et al.  Bound states in the continuum , 2016 .

[28]  A. Friesem,et al.  Resonant grating waveguide structures , 1997 .

[29]  Robert Magnusson,et al.  Guided-mode resonant polarization-controlled tunable color filters. , 2014, Optics express.

[30]  Shanhui Fan,et al.  All-pass transmission or flattop reflection filters using a single photonic crystal slab , 2004 .

[31]  Robert Magnusson,et al.  Mode-coupling mechanisms of resonant transmission filters. , 2014, Optics express.

[32]  R. Magnusson,et al.  Silicon-Layer Guided-Mode Resonance Polarizer With 40-nm Bandwidth , 2008, IEEE Photonics Technology Letters.

[33]  R. Magnusson,et al.  New principle for optical filters , 1992 .

[34]  G. M. Morris,et al.  Controlling the spectral response in guided-mode resonance filter design. , 2003, Applied optics.

[35]  Hisao Kikuta,et al.  Optical elements with subwavelength structured surfaces , 2005 .

[36]  Robert Magnusson,et al.  Wideband dielectric metamaterial reflectors: Mie scattering or leaky Bloch mode resonance? , 2018 .

[37]  R. Magnusson,et al.  Band flips and bound-state transitions in leaky-mode photonic lattices , 2018, Physical Review B.

[38]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[39]  T. Gaylord,et al.  Analysis and applications of optical diffraction by gratings , 1985, Proceedings of the IEEE.

[40]  Brian A. Slovick,et al.  Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector , 2014 .

[41]  Robert Magnusson,et al.  Resonant Photonic Biosensors with Polarization-Based Multiparametric Discrimination in Each Channel , 2011, Sensors.

[42]  R. Magnusson,et al.  Concurrent spatial and spectral filtering by resonant nanogratings. , 2015, Optics express.