Complexity-based permutation entropies: from deterministic time series to white noise

This is a paper in the intersection of time series analysis and complexity theory that presents new results on permutation complexity in general and permutation entropy in particular. In this context, permutation complexity refers to the characterization of time series by means of ordinal patterns (permutations), entropic measures, decay rates of missing ordinal patterns, and more. Since the inception of this “ordinal” methodology, its practical application to any type of scalar time series and real-valued processes have proven to be simple and useful. However, the theoretical aspects have remained limited to noiseless deterministic series and dynamical systems, the main obstacle being the super-exponential growth of visible permutations with length when randomness (also in form of observational noise) is present in the data. To overcome this difficulty, we take a new approach through complexity classes, which are precisely defined by the growth of visible permutations with length, regardless of the deterministic or noisy nature of the data. We consider three major classes: exponential, sub-factorial and factorial. The next step is to adapt the concept of Z-entropy to each of those classes, which we call permutation entropy because it coincides with the conventional permutation entropy on the exponential class. Z-entropies are a family of group entropies, each of them extensive on a given complexity class. The result is a unified approach to the ordinal analysis of deterministic and random processes, from dynamical systems to white noise, with new concepts and tools. Numerical simulations show that permutation entropy discriminates time series from all complexity classes.

[1]  M. C. Soriano,et al.  Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics. , 2019, Physical review. E.

[2]  Henrik Jeldtoft Jensen,et al.  Statistical mechanics of exploding phase spaces: ontic open systems , 2016, Journal of Physics A: Mathematical and Theoretical.

[3]  Sylvie Ruette Chaos on the Interval , 2017 .

[4]  Karsten Keller,et al.  On entropy, entropy-like quantities, and applications , 2015, 2202.03108.

[5]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[6]  Chstoph Bandt,et al.  Order Patterns in Time Series , 2007 .

[7]  Piergiulio Tempesta,et al.  Group entropies, correlation laws, and zeta functions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[9]  Karsten Keller,et al.  Efficiently Measuring Complexity on the Basis of Real-World Data , 2013, Entropy.

[10]  Massimiliano Zanin,et al.  Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review , 2012, Entropy.

[11]  L M Hively,et al.  Detecting dynamical changes in time series using the permutation entropy. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  M. C. Soriano,et al.  Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  G. Keller,et al.  Entropy of interval maps via permutations , 2002 .

[14]  Arthur A. B. Pessa,et al.  Characterizing stochastic time series with ordinal networks. , 2019, Physical review. E.

[15]  Heitor S. Ramos,et al.  Analysis and Classification of SAR Textures Using Information Theory , 2021, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[16]  H. Schuster Deterministic chaos: An introduction , 1984 .

[17]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[18]  A. Nies Computability and randomness , 2009 .

[19]  Henrik Jeldtoft Jensen,et al.  Universality Classes and Information-Theoretic Measures of Complexity via Group Entropies , 2019, Scientific Reports.

[20]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[21]  H. Piaggio Mathematical Analysis , 1955, Nature.

[22]  Piergiulio Tempesta,et al.  A generalized permutation entropy for noisy dynamics and random processes. , 2021, Chaos.

[23]  Osvaldo A. Rosso,et al.  Missing ordinal patterns in correlated noises , 2010 .

[24]  José M. Amigó,et al.  The equality of Kolmogorov–Sinai entropy and metric permutation entropy generalized , 2012 .

[25]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[26]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[27]  M. Mirzakhani,et al.  Introduction to Ergodic theory , 2010 .

[28]  Niels Wessel,et al.  Classifying cardiac biosignals using ordinal pattern statistics and symbolic dynamics , 2012, Comput. Biol. Medicine.

[29]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[30]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[31]  HENRY STEINITZ,et al.  KOLMOGOROV COMPLEXITY AND ALGORITHMIC RANDOMNESS , 2013 .

[32]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[33]  K. Keller,et al.  Equality of kolmogorov-sinai and permutation entropy for one-dimensional maps consisting of countably many monotone parts , 2018, Discrete & Continuous Dynamical Systems - A.

[34]  Mathieu Sinn,et al.  Kolmogorov-Sinai entropy from the ordinal viewpoint , 2010 .

[35]  O A Rosso,et al.  Distinguishing noise from chaos. , 2007, Physical review letters.

[36]  Karsten Keller,et al.  Ordinal symbolic analysis and its application to biomedical recordings , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  Aleksandr Yakovlevich Khinchin,et al.  Mathematical foundations of information theory , 1959 .

[38]  Arthur A. B. Pessa,et al.  ordpy: A Python package for data analysis with permutation entropy and ordinal network methods. , 2021, Chaos.

[39]  Henrik Jeldtoft Jensen,et al.  Group Entropies: From Phase Space Geometry to Entropy Functionals via Group Theory , 2018, Entropy.

[40]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[41]  P. Tempesta Formal groups and Z-entropies , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[42]  P. Tempesta Multivariate group entropies, super-exponentially growing complex systems, and functional equations. , 2020, Chaos.

[43]  Sergio Hernández,et al.  A Brief Review of Generalized Entropies , 2018, Entropy.

[44]  K. Keller,et al.  Permutation entropy: One concept, two approaches , 2013 .

[45]  Haroldo V. Ribeiro,et al.  Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane , 2016, ArXiv.

[46]  Abraham Lempel,et al.  On the Complexity of Finite Sequences , 1976, IEEE Trans. Inf. Theory.

[47]  V. M. Ilić,et al.  An overview of generalized entropic forms , 2021, EPL (Europhysics Letters).

[48]  L. Zunino,et al.  Revisiting the decay of missing ordinal patterns in long-term correlated time series , 2019, Physica A: Statistical Mechanics and its Applications.

[49]  G. Crooks On Measures of Entropy and Information , 2015 .

[50]  Miguel A. F. Sanjuán,et al.  Permutation complexity of spatiotemporal dynamics , 2010 .

[51]  José Amigó,et al.  Permutation Complexity in Dynamical Systems , 2010 .

[52]  Miguel A. F. Sanjuán,et al.  True and false forbidden patterns in deterministic and random dynamics , 2007 .

[53]  J. M. Amigó,et al.  Permutation complexity of interacting dynamical systems , 2013, 1305.1735.

[54]  José M. Amigó,et al.  Forbidden ordinal patterns in higher dimensional dynamics , 2008 .

[55]  Katharina Wittfeld,et al.  Distances of Time Series Components by Means of Symbolic Dynamics , 2004, Int. J. Bifurc. Chaos.

[56]  Sérgio B. Volchan,et al.  What Is a Random Sequence? , 2002, Am. Math. Mon..

[57]  Piergiulio Tempesta,et al.  A new class of entropic information measures, formal group theory and information geometry , 2018, Proceedings of the Royal Society A.

[58]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[59]  Danuta Makowiec,et al.  Ordinal pattern statistics for the assessment of heart rate variability , 2013 .