Unprecedented Multifunctionality in 1D Nb 1‐ x Ta x S 3 Transition Metal Trichalcogenide Alloy

[1]  Akanksha K. Menon,et al.  Decoupling electron and phonon transport in single-nanowire hybrid materials for high-performance thermoelectrics , 2021, Science Advances.

[2]  Honggang Gu,et al.  Birefringence and Dichroism in Quasi-1D Transition Metal Trichalcogenides: Direct Experimental Investigation. , 2021, Small.

[3]  C. Felser,et al.  A charge-density-wave topological semimetal , 2021 .

[4]  A. Zettl,et al.  Ultranarrow TaS2 Nanoribbons. , 2020, Nano letters.

[5]  J. Cabana,et al.  Phase‐Dependent Band Gap Engineering in Alloys of Metal‐Semiconductor Transition Metal Dichalcogenides , 2020, Advanced Functional Materials.

[6]  Zhen Cao,et al.  Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides , 2020, Nature Materials.

[7]  R. Klie,et al.  Quasi‐Binary Transition Metal Dichalcogenide Alloys: Thermodynamic Stability Prediction, Scalable Synthesis, and Application , 2020, Advanced materials.

[8]  Xiaodong Xu,et al.  One-Dimensional Moir\'e Excitons in Transition-Metal Dichalcogenide Heterobilayers , 2019, 1912.06628.

[9]  Peidong Yang,et al.  Introduction: 1D Nanomaterials/Nanowires. , 2019, Chemical reviews.

[10]  W. Liu,et al.  Observation of charge density wave transition in TaSe3 mesowires , 2019, Applied Physics Letters.

[11]  Micah J. Green,et al.  Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films , 2019, npj 2D Materials and Applications.

[12]  Bin Wei,et al.  Highly Sensitive Polarization Photodetection Using a Pseudo-One-Dimensional Nb(1- x)Ti xS3 Alloy. , 2019, ACS applied materials & interfaces.

[13]  A. Sinitskii,et al.  Gate-Controlled Metal-Insulator Transition in TiS3 Nanowire Field-Effect Transistors. , 2019, ACS nano.

[14]  T. Taniguchi,et al.  Observation of moiré excitons in WSe2/WS2 heterostructure superlattices , 2018, Nature.

[15]  E. Stach Order in one dimension , 2018, Nature Materials.

[16]  A. Sinitskii,et al.  Quasi-1D TiS3 Nanoribbons: Mechanical Exfoliation and Thickness-Dependent Raman Spectroscopy. , 2018, ACS nano.

[17]  Z. Mi,et al.  Characterizing the electrical breakdown properties of single n-i-n-n+:GaN nanowires , 2018, Applied Physics Letters.

[18]  Jeongyong Kim,et al.  Composition-Tunable Synthesis of Large-Scale Mo1- xW xS2 Alloys with Enhanced Photoluminescence. , 2018, ACS nano.

[19]  Chuanghan Hsu,et al.  A library of atomically thin metal chalcogenides , 2018, Nature.

[20]  Carmen C. Mayorga-Martinez,et al.  TaS3 Nanofibers: Layered Trichalcogenide for High-Performance Electronic and Sensing Devices. , 2017, ACS nano.

[21]  S. Tongay,et al.  Unusual Pressure Response of Vibrational Modes in Anisotropic TaS3 , 2017 .

[22]  Hao Sun,et al.  Energy harvesting and storage in 1D devices , 2017 .

[23]  A. Molina‐Mendoza,et al.  High Current Density Electrical Breakdown of TiS3 Nanoribbon‐Based Field‐Effect Transistors , 2017, 1704.05379.

[24]  M. Nagao,et al.  Coexistence of superconductivity and charge-density wave in the quasi-one-dimensional material HfTe3 , 2017, Scientific Reports.

[25]  A. Molina‐Mendoza,et al.  Electronics and optoelectronics of quasi-1D layered transition metal trichalcogenides , 2017, 1702.01865.

[26]  Theo Siegrist,et al.  One-dimensional organic lead halide perovskites with efficient bluish white-light emission , 2017, Nature Communications.

[27]  M. Potel,et al.  A disorder-enhanced quasi-one-dimensional superconductor , 2016, Nature Communications.

[28]  David G. Kwabi,et al.  Raman Spectroscopy in Lithium–Oxygen Battery Systems , 2015 .

[29]  A. Castellanos-Gómez,et al.  TiS3 Transistors with Tailored Morphology and Electrical Properties , 2015, Advanced materials.

[30]  K. Amine,et al.  Raman Evidence for Late Stage Disproportionation in a Li-O2 Battery. , 2014, The journal of physical chemistry letters.

[31]  Sefaattin Tongay,et al.  Two-dimensional semiconductor alloys: Monolayer Mo1−xWxSe2 , 2014 .

[32]  Feng Ding,et al.  Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe₂ , TaS₂ , and TaSe₂. , 2013, Small.

[33]  S. G. Zybtsev,et al.  Gigahertz-range synchronization at room temperature and other features of charge-density wave transport in the quasi-one-dimensional conductor NbS3 , 2009 .

[34]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[35]  C. Sourisseau,et al.  Electronic, vibrational and resonance Raman spectra of the layered semiconducting compound NbS3 , 1990 .

[36]  S. Uchida,et al.  Non-linear conductivity of monoclinic TaS3 , 1982 .

[37]  P. Monceau,et al.  Electron diffraction and resistivity measurements on the one‐dimensional orthorhombic and monoclinic structures of TaS3. comparison with NbSe3 , 1980 .

[38]  F. Jellinek,et al.  CRYSTAL-STRUCTURE OF NIOBIUM TRISULFIDE, NBS3 , 1978 .

[39]  A. Wold,et al.  Electrical properties and crystal structure of barium tantalum sulfide, BaTaS3 , 1969 .

[40]  Tay-Rong Chang,et al.  Metal–Semiconductor Phase‐Transition in WSe2(1‐x)Te2x Monolayer , 2017, Advanced materials.

[41]  A. Meerschaut,et al.  Structure and properties of the new phase of the pseudo one-dimensional compound TaS3 , 1981 .