Principally polarized ordinary abelian varieties over finite fields

Deligne has shown that there is an equivalence from the category of ordinary abelian varieties over a finite field A: to a category of Z-modules with additional structure. We translate several geometric notions, including that of a polarization, into Deligne's category of Z-modules. We use Deligne's equivalence to characterize the finite group schemes over k that occur as kernels of polarizations of ordinary abelian varieties in a given isogeny class over k . Our result shows that every isogeny class of simple odd-dimensional ordinary abelian varieties over a finite field contains a principally polarized variety. We use our result to completely characterize the Weil numbers of the isogeny classes of two-dimensional ordinary abelian varieties over a finite field that do not contain principally polarized varieties. We end by exhibiting the Weil numbers of several isogeny classes of absolutely simple four-dimensional ordinary abelian varieties over a finite field that do not contain principally polarized varieties.

[1]  Ming-Deh A. Huang,et al.  Primality Testing and Abelian Varieties over Finite Fields , 1992 .

[2]  Max-Albert Knus,et al.  Quadratic and Hermitian Forms over Rings , 1991 .

[3]  Hans-Georg Rück Abelian surfaces and jacobian varieties over finite fields , 1990 .

[4]  M. Carral,et al.  Quadratic and λ-hermitian forms , 1989 .

[5]  V. Srinivas,et al.  Varieties in positive characteristic with trivial tangent bundle , 1987 .

[6]  Michael Rosen Abelian Varieties over ℂ , 1986 .

[7]  L. Illusie,et al.  Cristaux ordinaires et coordonnées canoniques , 1981 .

[8]  Nicholas M. Katz,et al.  Serre-tate local moduli , 1981 .

[9]  André Weil,et al.  Zum Beweis des Torellischen Satzes , 1979 .

[10]  Kenji Ueno,et al.  Principally polarized abelian variaties dimension two or three are Jacobian varieties , 1973 .

[11]  William Messing,et al.  The Crystals Associated to Barsotti-Tate Groups: With Applications to Abelian Schemes , 1972 .

[12]  William Messing The crystals associated to barsotti-tate groups , 1972 .

[13]  P. Deligne,et al.  Variétés abéliennes ordinaires sur un corps fini , 1969 .

[14]  John Tate,et al.  Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T. Honda) , 1969 .

[15]  D. Mumford,et al.  The irreducibility of the space of curves of given genus , 1969 .

[16]  Taira Honda,et al.  Isogeny classes of abelian varieties over finite fields , 1968 .

[17]  J. Armitage On a theorem of Hecke in number fields and function fields , 1967 .

[18]  S. Lang,et al.  Abelian varieties over finite fields , 2005 .