Photoluminescence and Optical Absorption of Cs2NaScF6:Cr3+

The main objective of this paper is the characterization of the spectroscopic properties of new materials that are prospective laser media. This approach allows for the comparison of the properties of the Cr3+ in different environments. Here, we have studied the photoluminescence and optical absorption of Cs2NaScF6:Cr3+ single crystals. On the basis of near-infrared luminescence measurements at 2, 77, and 300 K the observed lines originated from the Cr3+-centres were associated with the $$^4 T_2 (^4 F) \to 4A_2 (^4 F)$$ transition and the lifetimes were obtained. In spite of the quenching observed as a function of temperature at least 10% of the 2 K emission intensity for Cs2NaScF6 doped with 1% of Cr3+ remains at room temperature. Besides, the 2 K emission broad band could be well described in terms of normal modes of the octahedral complex [CrF6]3−, and the Racah and crystal-field parameters calculated.

[1]  A. Meijerink,et al.  Electron–phonon coupling of Cr3+ in YAG and YGG , 2000 .

[2]  L. K. Smith,et al.  Laser performance of LiSrAlF6:Cr3+ , 1989 .

[3]  E. Mix,et al.  Spectroscopic properties of Cr-doped Sc2O3 , 2000 .

[4]  J. Ferguson,et al.  Crystal‐Field Spectra of d3,7 Ions. VII. Cr3+ in K2NaGaF6 , 1971 .

[5]  B. Villacampa,et al.  Phonon structure of Cr3+ photoluminescence in chromium doped MAF3 (M = Cd, Ca; A = Rb, Cs) crystals , 1995 .

[6]  W. Krupke,et al.  Optical properties of Cr3+ in fluorite‐structure hosts and in MgF*2 , 1987 .

[7]  B. Henderson,et al.  Optical spectroscopy of inorganic solids , 1989 .

[8]  G. Jantzen 1988 , 1988, The Winning Cars of the Indianapolis 500.

[9]  H. Güdel,et al.  Optical spectroscopy of CrCl63− doped Cs2NaScCl6: Broadband near-infrared luminescence and Jahn-Teller effect , 2001 .

[10]  E. Fargin,et al.  ESR of Cr3+ in the 12R hexagonal perovskite Cs2NaAlF6 , 1990 .

[11]  Lloyd L. Chase,et al.  LiCaAlF/sub 6/:Cr/sup 3+/: a promising new solid-state laser material , 1988 .

[12]  L. P. Sosman,et al.  Structural and vibrational study of chromium doped elpasolite crystals Cs2NaAlF6 , 2001 .

[13]  U. Brauch,et al.  KZnF3:Cr3+ — A tunable solid state NIR-laser , 1984 .

[14]  A. Rinzler,et al.  Two-photon excitation spectroscopy of Cr3+:K2NaScF6 elpasolite: I. Experimental aspects , 2001 .

[15]  L. P. Sosman,et al.  Vibrational Analysis of the Elpasolites Cs2NaAlF6 and Cs2NaGaF6 Doped with Cr3+ Ions by Fluorescence Spectroscopy , 2000, Journal of Fluorescence.

[16]  Lee,et al.  Excited-state absorption of Cr3+ in LiCaAlF6: Effects of asymmetric distortions and intensity selection rules. , 1989, Physical review. B, Condensed matter.

[17]  T. Glynn,et al.  Temperature dependence of the luminescence of GSGG : Cr3+ , 1990 .

[18]  R. Bartram,et al.  Raman scattering of chromium-doped halide elpasolite crystals , 1991 .

[19]  Andrews,et al.  Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetimes. , 1986, Physical review. B, Condensed matter.

[20]  A. Tressaud,et al.  Luminescence of the new elpasolite Rb2KGaF6 doped with Cr3 , 1991 .

[21]  N. Sonoyama,et al.  Electrochemical luminescence of ZnGa2O4 semiconductor electrodes activated with Cr and Co , 2000 .

[22]  T. Miyata,et al.  Gallium oxide as host material for multicolor emitting phosphors , 2000 .

[23]  N. Khaidukov,et al.  Investigation of Cr3+ ions in Cs2NaGaF6 single crystals by optical spectroscopy , 1999 .

[24]  B. Chai,et al.  Room temperature near-infrared tunable Cr:La/sub 3/Ga/sub 5/SiO/sub 14/ laser , 1988 .

[25]  L. P. Sosman,et al.  Study of optical properties of Cr3+ ions in Cs2NaAlF6 single crystals , 2000 .

[26]  Y. Tanabe,et al.  On the Absorption Spectra of Complex Ions II , 1954 .

[27]  D. Jaque,et al.  Optical properties of single doped Cr3+ and co-doped Cr3+–Nd3+ aluminum tantalum tellurite glasses , 2004 .

[28]  S. Kuck,et al.  Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers , 2001 .

[29]  L. P. Sosman,et al.  Structure determination and a vibrational study for the hexagonal elpasolite Cs2NaGaF6:Cr3+ , 2002 .

[30]  L. Andrews,et al.  Excited state absorption of Cr3+ in K2NaScF6 and Gd3Ga2(MO4)3, M=Ga, Al , 1986 .

[31]  L. Andrews,et al.  Tunable infrared solid-state laser materials based on Cr 3+ in low ligand fields , 1982 .

[32]  B. Henderson,et al.  Charge compensation and the luminescence of Cr3+ in KMgF3 , 1994 .

[33]  A. Rinzler,et al.  Pressure and temperature dependence of chromium photoluminescence spectra in fluoride elpasolites , 1992 .

[34]  M. Mortier,et al.  Optical studies of Cr 3+ in KMgF 3 : Time-resolved site-selective spectroscopy and experimental evidence of spin-orbit coupling , 1997 .

[35]  Henderson,et al.  Line shape of the Cr3+ luminescence in garnet crystals. , 1992, Physical review. B, Condensed matter.

[36]  A. G. Paulusz,et al.  The 2Eg→4A2g phosphorescence spectrum of the Cr3+ ion in K2NaAlF6 , 1979 .

[37]  R. Summitt,et al.  Optical Interactions in Solids , 1968 .

[38]  K. Rebane,et al.  Impurity spectra of solids , 1970 .

[39]  Bruce H. T. Chai,et al.  Flashlamp pumped Cr:LiSrAlF6 laser , 1991 .

[40]  J. G. Solé,et al.  Thermal hysteresis in the luminescence of Cr3+ ions in Sr0.6Ba0.4 (NbO3)2 , 2004 .

[41]  M. Shand,et al.  CW laser pumped emerald laser , 1984 .