New materials from theory: trends in the development of active materials

Active materials are materials that change shape when exposed to an applied field or a change of temperature. We review recently developed theory for active materials, with emphasis on predictions and methods that can guide the search for new materials. Special lattice parameters corresponding to certain special microstructures, texture, new concepts for large strain actuators, and the behavior of active materials at small scales are discussed.

[1]  Robert V. Kohn,et al.  Symmetry, texture and the recoverable strain of shape-memory polycrystals , 1996 .

[2]  Richard D. James Microstructure of Shape-Memory and Magnetostrictive Materials , 1990 .

[3]  Kaushik Bhattacharya,et al.  Wedge-like microstructure in martensites , 1991 .

[4]  V. V. Kokorin,et al.  Large magnetic‐field‐induced strains in Ni2MnGa single crystals , 1996 .

[5]  A. Clark,et al.  GIANT ROOM-TEMPERATURE MAGNETOSTRICTIONS IN TbFe$sub 2$ AND DyFe . , 1972 .

[6]  Gregory B Olson,et al.  MARTENSITE AND LIFE : DISPLACIVE TRANSFORMATIONS AS BIOLOGICAL PROCESSES , 1982 .

[7]  K. Bhattacharya Self-accommodation in martensite , 1992 .

[8]  J. Ball,et al.  Hysteresis During Stress-Induced Variant Rearrangement , 1995 .

[9]  Seung Eek Eagle Park,et al.  Relaxor-based ferroelectric single crystals for electromechanical actuators , 1998, Smart Structures.

[10]  Richard D. James,et al.  Magnetic and magnetomechanical properties of Ni2MnGa , 1999 .

[11]  Richard D. James,et al.  Alternative smart materials , 1996, Smart Structures.

[12]  V. V. Kokorin,et al.  Ferromagnetic shape memory in the NiMnGa system , 1999 .

[13]  Carsten Carstensen,et al.  Nonclassical Austenite-Martensite Interfaces , 1997 .

[14]  R. D. James,et al.  Proposed experimental tests of a theory of fine microstructure and the two-well problem , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[15]  C. Palmstrøm,et al.  Molecular beam epitaxy growth of ferromagnetic single crystal (001) Ni2MnGa on (001) GaAs , 1999 .

[16]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[17]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[18]  Richard D. James,et al.  Magnetostriction of martensite , 1998 .

[19]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[20]  M. A. Northrup,et al.  Thin Film Shape Memory Alloy Microactuators , 1996, Microelectromechanical Systems (MEMS).

[21]  Robert E. Newnham,et al.  Molecular Mechanisms in Smart Materials , 1997 .

[22]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[23]  Richard Phillips Feynman,et al.  Infinitesimal machinery , 1993 .

[24]  Shuichi Miyazaki,et al.  Development of Shape Memory Alloys , 1989 .

[25]  Richard P. Feynman There's plenty of room at the bottom [data storage] , 1992, Journal of Microelectromechanical Systems.

[26]  Richard D. James,et al.  Kinetics of materials with wiggly energies: Theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy , 1996 .

[27]  M. Pitteri,et al.  Generic and non-generic cubic-to-monoclinic transitions and their twins 1 1 Dedicated to Prof. I. Mu , 1998 .

[28]  T. Shield,et al.  Symmetry and microstructure in martensites , 1998 .

[29]  G. Ruddock A microstructure of martensite which is not a minimiser of energy: the X-interface , 1994 .