Optimisation of Operations of a Water Distribution System for Reduced Power Usage
暂无分享,去创建一个
There are many improvements to operation that can be made to a water distribution system once it has been constructed and placed in ground. Pipes and associated storages and pumps are typically designed to meet average peak daily demands, offer some capacity for growth, and also allow for some deterioration of performance over time. However, the 'as constructed' performance of the pipeline is invariably different to what was designed on paper, and this is particularly so for anything other than design flows, such as during times of water restrictions when there are significantly reduced flows. Because of this, there remain significant benefits to owners and operators for the adaptive and global optimisation of such systems. The present paper uses the Ouyen subsystem of the Northern Mallee Pipeline, in Victoria, as a case study for the development of an optimisation model. This has been done with the intent of using this model to reduce costs and provide better service to customers on this system. The Ouyen subsystem consists of 1600 km of trunk and distribution pipeline servicing an area of 456,000 Ha. The system includes 2 fixed speed pumps diverting water from the Murray River at Liparoo into two 150 ML balancing storages at Ouyen, 4 variable speed pumps feeding water from the balancing storages into the pipeline system, 2 variable speed pressure booster pumps and 5 town balancing storages. When considering all these components of the system, power consumption becomes an important part of the overall operation. The present paper considers a global optimisation model to minimise power consumption while maintaining reasonable performance of the system. The main components of the model are described including the network structure and the costs functions associated with the system. The final model presents the cost functions associated with the pump scheduling, including the penalties descriptions associated with maintaining appropriate storages levels and pressure bounds within the water distribution network.
[1] Vincent Kelner,et al. Optimal Pump Scheduling for Water Supply Using Genetic Algorithms , 2003 .
[2] Kevin E Lansey,et al. Optimal Control of Water Supply Pumping Systems , 1994 .