Immunolocalization and pharmacological relevance of oligopeptide transporter PepT1 in intestinal absorption of β‐lactam antibiotics

[1]  H. Yamamoto,et al.  Sequence, tissue distribution and developmental changes in rat intestinal oligopeptide transporter. , 1996, Biochimica et biophysica acta.

[2]  H. Saito,et al.  Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of beta-lactam antibiotics in the intestine and kidney. , 1995, The Journal of pharmacology and experimental therapeutics.

[3]  M. Hediger,et al.  Molecular cloning of PEPT 2, a new member of the H+/peptide cotransporter family, from human kidney. , 1995, Biochimica et biophysica acta.

[4]  H. Higashida,et al.  Functional expression of transporter for beta-lactam antibiotics and dipeptides in Xenopus laevis oocytes injected with messenger RNA from human, rat and rabbit small intestines. , 1995, The Journal of pharmacology and experimental therapeutics.

[5]  M. Hediger,et al.  Human Intestinal H+/Peptide Cotransporter , 1995, The Journal of Biological Chemistry.

[6]  G. Amidon,et al.  Peptide-based Drug Design, Controlling Transport and Metabolism , 1995 .

[7]  T. Terasaki,et al.  Functional expression of intestinal dipeptide/beta-lactam antibiotic transporter in Xenopus laevis oocytes. , 1994, Biochemical pharmacology.

[8]  M. Romero,et al.  Expression cloning of a mammalian proton-coupled oligopeptide transporter , 1994, Nature.

[9]  L. Johnson,et al.  Physiology of the gastrointestinal tract , 2012 .

[10]  T. Terasaki,et al.  Intestinal brush‐border transport of the oral cephalosporin antibiotic, cefdinir, mediated by dipeptide and monocarboxylic acid transport systems in rabbits , 1993, The Journal of pharmacy and pharmacology.

[11]  C Mrowietz,et al.  Improved in vitro rheological system for studying the effect of fluid shear stress on cultured cells. , 1993, The American journal of physiology.

[12]  T. Ono,et al.  Immunocytochemical localization of rat intestinal 15 kDa protein, a member of cytoplasmic fatty acid‐binding proteins , 1992, The Anatomical record.

[13]  S. Shirazi-Beechey,et al.  Glycyl-L-proline transport in rabbit enterocyte basolateral-membrane vesicles. , 1990, The Biochemical journal.

[14]  K. Inui,et al.  Effect of various chemical modifiers on H+ coupled transport of cephradine via dipeptide carriers in rabbit intestinal brush-border membranes: role of histidine residues. , 1989, The Journal of pharmacology and experimental therapeutics.

[15]  P. Aronson,et al.  Membrane distribution of sodium-hydrogen and chloride-bicarbonate exchangers in crypt and villus cell membranes from rabbit ileum. , 1988, The Journal of clinical investigation.

[16]  T. Terasaki,et al.  β-Lactam antibiotics and transport via the dipeptide carrier system across the intestinal brush-border membrane , 1987 .

[17]  H. Lodish,et al.  Primary structure and transmembrane orientation of the murine anion exchange protein , 1985, Nature.

[18]  N. Takuwa,et al.  Effect of hydrogen ion-gradient on carrier-mediated transport of glycylglycine across brush border membrane vesicles from rabbit small intestine. , 1985, The Japanese journal of physiology.

[19]  V. Ganapathy,et al.  Transport of glycyl-L-proline into intestinal and renal brush border vesicles from rabbit. , 1981, The Journal of biological chemistry.

[20]  E. Keeffe,et al.  Validation of a recording spectrophotometric method for measurement of membrane-associated Mg- and NaK-ATPase activity. , 1979, The Journal of laboratory and clinical medicine.

[21]  A. Tsuji,et al.  Kinetics of Michaelis‐Menten absorption of amino‐penicillins in rats , 1978, The Journal of pharmacy and pharmacology.

[22]  K. Sigrist-Nelson Dipeptide transport in isolated intestinal brush border membrane. , 1975, Biochimica et biophysica acta.

[23]  I. Lieberman,et al.  Function and control of liver alkaline phosphatase. , 1972, The Journal of biological chemistry.