3D object modeling and recognition via online hierarchical Pitman-yor process mixture learning

We present a statistical framework for 3D objects modeling and recognition. Our framework is based on describing 3D objects using local descriptors from which a visual vocabulary if built and on a hierarchical Pitman-Yor process mixture of Beta-Liouville distributions. An online approach based on variational Bayes is developed for the learning of the proposed framework. The merits of our model are shown via extensive experiments.

[1]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[2]  R. M. Korwar,et al.  Contributions to the Theory of Dirichlet Processes , 1973 .

[3]  Nizar Bouguila,et al.  A Dirichlet Process Mixture of Generalized Dirichlet Distributions for Proportional Data Modeling , 2010, IEEE Transactions on Neural Networks.

[4]  David B. Dunson,et al.  A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation , 2009, NIPS.

[5]  Hagai Attias,et al.  A Variational Bayesian Framework for Graphical Models , 1999 .

[6]  Yee Whye Teh,et al.  A Hierarchical Bayesian Language Model Based On Pitman-Yor Processes , 2006, ACL.

[7]  Nizar Bouguila,et al.  Infinite Liouville mixture models with application to text and texture categorization , 2012, Pattern Recognit. Lett..

[8]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[9]  Nizar Bouguila,et al.  A powerful finite mixture model based on the generalized Dirichlet distribution: unsupervised learning and applications , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[10]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[11]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[12]  Michael I. Jordan,et al.  Hierarchical Bayesian Nonparametric Models with Applications , 2008 .

[13]  David M. Blei,et al.  Nonparametric variational inference , 2012, ICML.

[14]  Thomas L. Griffiths,et al.  Interpolating between types and tokens by estimating power-law generators , 2005, NIPS.

[15]  Masa-aki Sato,et al.  Online Model Selection Based on the Variational Bayes , 2001, Neural Computation.

[16]  Radford M. Neal Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[17]  N. Bouguila,et al.  A Dirichlet process mixture of dirichlet distributions for classification and prediction , 2008, 2008 IEEE Workshop on Machine Learning for Signal Processing.

[18]  Jaewook Lee,et al.  Clustering Based on Gaussian Processes , 2007, Neural Computation.

[19]  J. Pitman,et al.  The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .

[20]  D. Ziou,et al.  Ieee Workshop on Machine Learning for Signal Processing Improving Content Based Image Retrieval Systems Using Finite M U Lt I N 0 M I a L D I Rich Let M I Xtu R E , 2022 .

[21]  Chong Wang,et al.  Online Variational Inference for the Hierarchical Dirichlet Process , 2011, AISTATS.

[22]  Michael I. Jordan,et al.  Bayesian Nonparametrics: Hierarchical Bayesian nonparametric models with applications , 2010 .

[23]  Michael I. Jordan,et al.  Variational inference for Dirichlet process mixtures , 2006 .

[24]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .