3D object modeling and recognition via online hierarchical Pitman-yor process mixture learning
暂无分享,去创建一个
Nizar Bouguila | Faisal R. Al-Osaimi | Wentao Fan | Ji-Xiang Du | N. Bouguila | Wentao Fan | Jixiang Du
[1] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[2] R. M. Korwar,et al. Contributions to the Theory of Dirichlet Processes , 1973 .
[3] Nizar Bouguila,et al. A Dirichlet Process Mixture of Generalized Dirichlet Distributions for Proportional Data Modeling , 2010, IEEE Transactions on Neural Networks.
[4] David B. Dunson,et al. A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation , 2009, NIPS.
[5] Hagai Attias,et al. A Variational Bayesian Framework for Graphical Models , 1999 .
[6] Yee Whye Teh,et al. A Hierarchical Bayesian Language Model Based On Pitman-Yor Processes , 2006, ACL.
[7] Nizar Bouguila,et al. Infinite Liouville mixture models with application to text and texture categorization , 2012, Pattern Recognit. Lett..
[8] Thomas A. Funkhouser,et al. The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..
[9] Nizar Bouguila,et al. A powerful finite mixture model based on the generalized Dirichlet distribution: unsupervised learning and applications , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..
[10] Leonidas J. Guibas,et al. Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.
[11] J. Sethuraman. A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .
[12] Michael I. Jordan,et al. Hierarchical Bayesian Nonparametric Models with Applications , 2008 .
[13] David M. Blei,et al. Nonparametric variational inference , 2012, ICML.
[14] Thomas L. Griffiths,et al. Interpolating between types and tokens by estimating power-law generators , 2005, NIPS.
[15] Masa-aki Sato,et al. Online Model Selection Based on the Variational Bayes , 2001, Neural Computation.
[16] Radford M. Neal. Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .
[17] N. Bouguila,et al. A Dirichlet process mixture of dirichlet distributions for classification and prediction , 2008, 2008 IEEE Workshop on Machine Learning for Signal Processing.
[18] Jaewook Lee,et al. Clustering Based on Gaussian Processes , 2007, Neural Computation.
[19] J. Pitman,et al. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .
[20] D. Ziou,et al. Ieee Workshop on Machine Learning for Signal Processing Improving Content Based Image Retrieval Systems Using Finite M U Lt I N 0 M I a L D I Rich Let M I Xtu R E , 2022 .
[21] Chong Wang,et al. Online Variational Inference for the Hierarchical Dirichlet Process , 2011, AISTATS.
[22] Michael I. Jordan,et al. Bayesian Nonparametrics: Hierarchical Bayesian nonparametric models with applications , 2010 .
[23] Michael I. Jordan,et al. Variational inference for Dirichlet process mixtures , 2006 .
[24] Leonidas J. Guibas,et al. A concise and provably informative multi-scale signature based on heat diffusion , 2009 .