Threshold modeling of extreme spatial rainfall

We propose an approach to spatial modeling of extreme rainfall, based on max-stable processes fitted using partial duration series and a censored threshold likelihood function. The resulting models are coherent with classical extreme-value theory and allow the consistent treatment of spatial dependence of rainfall using ideas related to those of classical geostatistics. We illustrate the ideas through data from the Val Ferret watershed in the Swiss Alps, based on daily cumulative rainfall totals recorded at 24 stations for four summers, augmented by a longer series from nearby. We compare the fits of different statistical models appropriate for spatial extremes, select that best fitting our data, and compare return level estimates for the total daily rainfall over the stations. The method can be used in other situations to produce simulations needed for hydrological models, and in particular, for the generation of spatially heterogeneous extreme rainfall fields over catchments.

[1]  H. V. Vyver,et al.  Spatial regression models for extreme precipitation in Belgium , 2012 .

[2]  Laurens de Haan,et al.  Stationary max-stable fields associated to negative definite functions. , 2008, 0806.2780.

[3]  Anthony C. Davison,et al.  Local models for exploratory analysis of hydrological extremes , 2002 .

[4]  M. Carvalho,et al.  Bivariate Extreme Statistics, Ii , 2012 .

[5]  Stuart G. Coles,et al.  Regional Modelling of Extreme Storms Via Max‐Stable Processes , 1993 .

[7]  Harry Joe,et al.  Composite Likelihood Methods , 2012 .

[8]  C. De Michele,et al.  Multivariate multiparameter extreme value models and return periods: A copula approach , 2010 .

[9]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[10]  Sidney I. Resnick,et al.  Extreme values of independent stochastic processes , 1977 .

[11]  E. Zelenhasić,et al.  A Stochastic Model for Flood Analysis , 1970 .

[12]  Anthony C. Davison,et al.  Spatial modeling of extreme snow depth , 2011, 1111.7091.

[13]  N. Reid,et al.  AN OVERVIEW OF COMPOSITE LIKELIHOOD METHODS , 2011 .

[14]  Philip Jonathan,et al.  For Peer Review Threshold modelling of spatially-dependent non-stationary extremes with application to hurricane-induced wave heights , 2011 .

[15]  S. Kotz,et al.  Multivariate Extreme‐Value Theory , 2014 .

[16]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[17]  François Ingelrest,et al.  SensorScope: Application-specific sensor network for environmental monitoring , 2010, TOSN.

[18]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[19]  H. Madsen,et al.  Regional estimation of rainfall intensity‐duration‐frequency curves using generalized least squares regression of partial duration series statistics , 2002 .

[20]  Jonathan A. Tawn,et al.  Bivariate extreme value theory: Models and estimation , 1988 .

[21]  Scott A. Sisson,et al.  Detection of non-stationarity in precipitation extremes using a max-stable process model , 2011 .

[22]  Space-Time Modelling of Rainfall for Continuous Simulation , 2007 .

[23]  Jonathan A. Tawn,et al.  Dependence modelling for spatial extremes , 2012 .

[24]  C. Zhou,et al.  On spatial extremes: With application to a rainfall problem , 2008, 0807.4092.

[25]  A. Davison,et al.  Composite likelihood estimation for the Brown–Resnick process , 2013 .

[26]  Philippe Naveau,et al.  Stochastic downscaling of precipitation: From dry events to heavy rainfalls , 2007 .

[27]  T. A. Buishand,et al.  Bivariate extreme-value data and the station-year method , 1984 .

[28]  Jonathan A. Tawn,et al.  A dependence measure for multivariate and spatial extreme values: Properties and inference , 2003 .

[29]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[30]  Masaaki Sibuya,et al.  Bivariate extreme statistics, I , 1960 .

[31]  D. Rosato An Overview of Composites , 1982 .

[32]  M. Parlange,et al.  Improving the degree-day method for sub-daily melt simulations with physically-based diurnal variations , 2013 .

[33]  S. Padoan,et al.  Likelihood-Based Inference for Max-Stable Processes , 2009, 0902.3060.

[34]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[35]  C. Varin,et al.  A note on composite likelihood inference and model selection , 2005 .

[36]  Anthony C. Davison,et al.  Modelling Time Series Extremes , 2012 .

[37]  J. Rousselle,et al.  Some Problems of Flood Analysis , 1971 .

[38]  Jonathan A. Tawn,et al.  Modelling extremes of the areal rainfall process. , 1996 .

[39]  Daniel T. Kaplan,et al.  Introduction to Statistical Modeling , 2005 .

[40]  A. Davison,et al.  Geostatistics of Dependent and Asymptotically Independent Extremes , 2013, Mathematical Geosciences.

[41]  Anthony C. Davison,et al.  Generalized additive models for sample extremes , 2005 .

[42]  Richard A. Davis,et al.  The extremogram: a correlogram for extreme events , 2009, 1001.1821.

[43]  Anthony C. Davison,et al.  Geostatistics of extremes , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  Raphael Huser,et al.  Space–time modelling of extreme events , 2012, 1201.3245.

[45]  Richard L. Smith,et al.  Models for exceedances over high thresholds , 1990 .

[46]  G. Vecchi,et al.  Characterization of rainfall distribution and flooding associated with U.S. landfalling tropical cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne (2004) , 2011 .

[47]  Philip Jonathan,et al.  Threshold modelling of spatially dependent non‐stationary extremes with application to hurricane‐induced wave heights , 2011 .

[48]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[49]  M. Vetterli,et al.  Hydrologic response of an alpine watershed: Application of a meteorological wireless sensor network to understand streamflow generation , 2011 .

[50]  R. Chandler,et al.  Spatial‐temporal rainfall simulation using generalized linear models , 2005 .

[51]  Xiaogu Zheng,et al.  Simulation of spatial dependence in daily rainfall using multisite generators , 2008 .

[52]  V. Isham,et al.  A point process model for rainfall: further developments , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[53]  Anthony C. Davison,et al.  Local likelihood smoothing of sample extremes , 2000 .

[54]  Martin Schlather,et al.  Models for Stationary Max-Stable Random Fields , 2002 .

[55]  David R. Cox,et al.  A simple spatial-temporal model of rainfall , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[56]  Nicole A. Lazar,et al.  Statistics of Extremes: Theory and Applications , 2005, Technometrics.

[57]  Laurens de Haan,et al.  Spatial extremes: Models for the stationary case , 2006 .

[58]  D. Wilks,et al.  The weather generation game: a review of stochastic weather models , 1999 .

[59]  D. Nychka,et al.  Bayesian Spatial Modeling of Extreme Precipitation Return Levels , 2007 .

[60]  Mathieu Ribatet,et al.  Conditional simulation of max-stable processes , 2012, 1208.5376.

[61]  Jun Yan,et al.  El Niño–Southern Oscillation influence on winter maximum daily precipitation in California in a spatial model , 2011 .

[62]  A. Ledford,et al.  Statistics for near independence in multivariate extreme values , 1996 .

[63]  Saralees Nadarajah,et al.  Modeling Annual Extreme Precipitation in China Using the Generalized Extreme Value Distribution , 2007 .

[64]  L. de Haan,et al.  A Spectral Representation for Max-stable Processes , 1984 .

[65]  Valerie Isham,et al.  Some models for rainfall based on stochastic point processes , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[66]  M. Parlange,et al.  Statistics of extremes in hydrology , 2002 .

[67]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[68]  Peter Hall,et al.  Nonparametric Analysis of Temporal Trend When Fitting Parametric Models to Extreme­Value Data , 2000 .

[69]  A. Davison,et al.  Statistical Modeling of Spatial Extremes , 2012, 1208.3378.

[70]  W. Langbein Annual floods and the partial‐duration flood series , 1949 .

[71]  Alan E. Gelfand,et al.  Continuous Spatial Process Models for Spatial Extreme Values , 2010 .