Generalized reflexive solutions of the matrix equation AXB=D and an associated optimal approximation problem

Let R@?C^m^x^m and S@?C^n^x^n be nontrivial unitary involutions, i.e., R^H=R=R^-^1 I"m and S^H=S=S^-^1 I"n. We say that G@?C^m^x^n is a generalized reflexive matrix if RGS=G. The set of all mxn generalized reflexive matrices is denoted by GRC^m^x^n. In this paper, a sufficient and necessary condition for the matrix equation AXB=D, where A@?C^p^x^m,B@?C^n^x^q and D@?C^p^x^q, to have a solution X@?GRC^m^x^n is established, and if it exists, a representation of the solution set S"X is given. An optimal approximation between a given matrix X@?@?C^m^x^n and the affine subspace S"X is discussed, an explicit formula for the unique optimal approximation solution is presented, and a numerical example is provided.

[1]  J. Aubin,et al.  APPLIED FUNCTIONAL ANALYSIS , 1981, The Mathematical Gazette.

[2]  Hsin-Chu Chen Generalized Reflexive Matrices: Special Properties and Applications , 1998, SIAM J. Matrix Anal. Appl..

[3]  William F. Trench,et al.  Minimization problems for (R,S)-symmetric and (R,S)-skew symmetric matrices , 2004 .

[4]  I. J. Good,et al.  The Inverse of a Centrosymmetric Matrix , 1970 .

[5]  G. Stewart Computing theCS decomposition of a partitioned orthonormal matrix , 1982 .

[6]  Raymond H. Chan,et al.  Inverse eigenproblem for centrosymmetric and centroskew matrices and their approximation , 2004, Theor. Comput. Sci..

[7]  Salvatore D. Morgera,et al.  On the reducibility of centrosymmetric matrices — Applications in engineering problems , 1989 .

[8]  Alan L. Andrew,et al.  Solution of Equations Involving Centrosymmetric Matrices , 1973 .

[9]  D. S. Cvetkovi-Iliíc The reflexive solutions of the matrix equation AX B = C , 2006 .

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  J. Weaver Centrosymmetric (Cross-Symmetric) Matrices, Their Basic Properties, Eigenvalues, and Eigenvectors , 1985 .

[12]  A. Cantoni,et al.  Eigenvalues and eigenvectors of symmetric centrosymmetric matrices , 1976 .

[13]  Mark Yasuda Spectral Characterizations for Hermitian Centrosymmetric K-Matrices and Hermitian Skew-Centrosymmetric K-Matrices , 2003, SIAM J. Matrix Anal. Appl..

[14]  R. Penrose A Generalized inverse for matrices , 1955 .

[15]  Dai Hua On the symmetric solutions of linear matrix equations , 1990 .

[16]  T. L. Boullion,et al.  The pseudoinverse of a centrosymmetric matrix , 1973 .

[17]  Mark Yasuda,et al.  A Spectral Characterization of Generalized Real Symmetric Centrosymmetric and Generalized Real Symmetric Skew-Centrosymmetric Matrices , 2002, SIAM J. Matrix Anal. Appl..

[18]  M. Saunders,et al.  Towards a Generalized Singular Value Decomposition , 1981 .

[19]  Sujit Kumar Mitra,et al.  Hermitian and Nonnegative Definite Solutions of Linear Matrix Equations , 1976 .

[20]  Jean Pierre Delmas,et al.  On adaptive EVD asymptotic distribution of centro-symmetric covariance matrices , 1999, IEEE Trans. Signal Process..

[21]  Xi-Yan Hu,et al.  The reflexive and anti-reflexive solutions of the matrix equation AX = B , 2003 .

[22]  Alan L. Andrew,et al.  Eigenvectors of certain matrices , 1973 .

[23]  D S Cvetkovic Ilic THE REFLEXIVE SOLUTIONS OF THE MATRIX EQUATION AXB=C , 2006 .

[24]  W. Wang,et al.  The Structure of Weighting Coefficient Matrices of Harmonic Differential Quadrature and Its Applications , 1996, ArXiv.