The tidal-thermal evolution of the Pluto–Charon system

[1]  Lenore L. Dai,et al.  Constraining Europa's ice shell thickness with fundamental mode surface wave dispersion , 2021 .

[2]  W. Banerdt,et al.  Seismic detection of the martian core , 2021, Science.

[3]  W. Banerdt,et al.  Thickness and structure of the martian crust from InSight seismic data , 2021, Science.

[4]  W. Banerdt,et al.  Upper mantle structure of Mars from InSight seismic data , 2021, Science.

[5]  F. Deschamps,et al.  Scaling laws for mixed-heated stagnant-lid convection and application to Europa , 2021 .

[6]  G. Steinbrügge,et al.  Tidal Heating Did Not Dry out Io and Europa , 2021, The Planetary Science Journal.

[7]  D. Giardini,et al.  Dynamical evidence for Phobos and Deimos as remnants of a disrupted common progenitor , 2021, Nature Astronomy.

[8]  L. Gizon,et al.  Habitability of the early Earth: liquid water under a faint young Sun facilitated by strong tidal heating due to a closer Moon , 2020, PalZ.

[9]  Jeffrey R. Johnson,et al.  Science Goals and Objectives for the Dragonfly Titan Rotorcraft Relocatable Lander , 2021, The Planetary Science Journal.

[10]  R. Canup,et al.  On the Origin of the Pluto System , 2021, 2107.08126.

[11]  F. Deschamps Stagnant lid convection with temperature-dependent thermal conductivity and the thermal evolution of icy worlds , 2020 .

[12]  J. Renaud,et al.  Tidal Dissipation in Dual-body, Highly Eccentric, and Nonsynchronously Rotating Systems: Applications to Pluto–Charon and the Exoplanet TRAPPIST-1e , 2020, 2010.11801.

[13]  R. Tyler Heating of Enceladus due to the dissipation of ocean tides , 2020 .

[14]  F. Nimmo,et al.  Evidence for a hot start and early ocean formation on Pluto , 2020, Nature Geoscience.

[15]  R. Park,et al.  Resonance locking in giant planets indicated by the rapid orbital expansion of Titan , 2020, Nature Astronomy.

[16]  S. Ferraz-Mello,et al.  Tidal friction in satellites and planets. The new version of the creep tide theory , 2020, 2004.01109.

[17]  K. Ennico,et al.  Charon: A Brief History of Tides , 2020, Journal of Geophysical Research: Planets.

[18]  G. Choblet,et al.  Tidally Heated Convection and the Occurrence of Melting in Icy Satellites: Application to Europa , 2020, Journal of Geophysical Research: Planets.

[19]  Jennifer M. Brown,et al.  Holistic Approach for Studying Planetary Hydrospheres: Gibbs Representation of Ices Thermodynamics, Elasticity, and the Water Phase Diagram to 2,300 MPa , 2020, Journal of Geophysical Research: Planets.

[20]  Berkeley,et al.  The gravity field and interior structure of Dione , 2019, Icarus.

[21]  J. Spencer The Geology and Geophysics of Charon , 2020 .

[22]  D. Giardini,et al.  Tidal Response of Mars Constrained From Laboratory‐Based Viscoelastic Dissipation Models and Geophysical Data , 2019, Journal of Geophysical Research: Planets.

[23]  A. Mocquet,et al.  Tidal response of rocky and ice-rich exoplanets , 2019, Astronomy & Astrophysics.

[24]  R. Hyodo,et al.  Early formation of moons around large trans-Neptunian objects via giant impacts , 2019, Nature Astronomy.

[25]  F. Nimmo,et al.  Pluto’s ocean is capped and insulated by gas hydrates , 2019, Nature Geoscience.

[26]  O. Umurhan,et al.  Detection of ammonia on Pluto’s surface in a region of geologically recent tectonism , 2019, Science Advances.

[27]  M. Panning,et al.  The rheology and thermal history of Mars revealed by the orbital evolution of Phobos , 2019, Nature.

[28]  G. Boué,et al.  Tidal evolution of the Keplerian elements , 2019, Celestial Mechanics and Dynamical Astronomy.

[29]  T. Gerkema,et al.  Do tidally-generated inertial waves heat the subsurface oceans of Europa and Enceladus? , 2019, Icarus.

[30]  M. Beuthe Enceladus's crust as a non-uniform thin shell: II tidal dissipation , 2019, Icarus.

[31]  H. Lau,et al.  Anelasticity from seismic to tidal timescales: Theory and observations , 2019, Earth and Planetary Science Letters.

[32]  M. Neveu,et al.  Evolution of Saturn’s Mid-Sized Moons , 2019, Nature Astronomy.

[33]  J. Moore,et al.  The nature and origin of Charon's smooth plains , 2018, Icarus.

[34]  L. Kiss,et al.  Geophysical assessment of habitability for the TRAPPIST-1 exoplanets , 2019 .

[35]  F. Nimmo,et al.  Implications of the observed Pluto–Charon density contrast , 2018, Icarus.

[36]  R. Canup,et al.  Origin of Phobos and Deimos by the impact of a Vesta-to-Ceres sized body with Mars , 2018, Science Advances.

[37]  K. Ennico,et al.  Ices on Charon: Distribution of H 2 O and NH 3 from New Horizons LEISA observations , 2018 .

[38]  H. Weaver,et al.  The Pluto System After New Horizons , 2017, The Trans-Neptunian Solar System.

[39]  M. Jutzi,et al.  Relevance of tidal heating on large TNOs , 2017, 1706.04682.

[40]  R. Lorenz,et al.  Vital Signs: Seismology of Icy Ocean Worlds. , 2018, Astrobiology.

[41]  A. Rivoldini,et al.  A Geophysical Perspective on the Bulk Composition of Mars , 2017 .

[42]  K. Ennico,et al.  The Pluto system after the New Horizons flyby , 2017 .

[43]  Gabriel Tobie,et al.  Powering prolonged hydrothermal activity inside Enceladus , 2017 .

[44]  J. Renaud,et al.  Increased Tidal Dissipation Using Advanced Rheological Models: Implications for Io and Tidally Active Exoplanets , 2017, 1707.06701.

[45]  T. Nissen‐Meyer,et al.  Seismic Wave Propagation in Icy Ocean Worlds , 2017, 1705.03500.

[46]  R. Lorenz,et al.  Expected Seismicity and the Seismic Noise Environment of Europa , 2017, 1705.03424.

[47]  S. Desch,et al.  Differentiation and cryovolcanism on Charon: A view before and after New Horizons , 2017 .

[48]  J. Moore,et al.  Origin of the Pluto–Charon system: Constraints from the New Horizons flyby , 2017 .

[49]  Y. Sekine,et al.  The Charon-forming giant impact as a source of Pluto’s dark equatorial regions , 2017, Nature Astronomy.

[50]  T. Lauer,et al.  Charon tectonics , 2016, Icarus.

[51]  T. Lauer,et al.  Mean radius and shape of Pluto and Charon from New Horizons images , 2016, 1603.00821.

[52]  J. Moore,et al.  Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto , 2016, Nature.

[53]  Robert T. Pappalardo,et al.  Ocean worlds in the outer solar system , 2016 .

[54]  Amy C. Barr,et al.  Recent tectonic activity on Pluto driven by phase changes in the ice shell , 2016, 1606.04840.

[55]  R. Cooper,et al.  Tidal dissipation in creeping ice and the thermal evolution of Europa , 2016 .

[56]  D. E. Jennings,et al.  Surface compositions across Pluto and Charon , 2016, Science.

[57]  T. Lauer,et al.  The geology of Pluto and Charon through the eyes of New Horizons , 2016, Science.

[58]  R. Cooper,et al.  Convection-Induced Microstructure and Tidal Dissipation in Polycrystalline Ice; an Experimental Approach , 2016 .

[59]  C. M. Lisse,et al.  The Pluto system: Initial results from its exploration by New Horizons , 2015, Science.

[60]  R. Barnes,et al.  Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions , 2015, Astrobiology.

[61]  D. Goldsby,et al.  The constant‐hardness creep compliance of polycrystalline ice , 2015 .

[62]  M. Efroimsky TIDAL EVOLUTION OF ASTEROIDAL BINARIES. RULED BY VISCOSITY. IGNORANT OF RIGIDITY , 2015, 1506.09157.

[63]  W. Henning,et al.  TIDAL HEATING IN A MAGMA OCEAN WITHIN JUPITER’S MOON Io , 2015 .

[64]  C. Sotin,et al.  Interiors and Evolution of Icy Satellites , 2015 .

[65]  James G. Williams,et al.  Tides on the Moon: Theory and determination of dissipation , 2015 .

[66]  Hidenori Genda,et al.  Formation of Phobos and Deimos via a giant impact , 2015, 1503.05623.

[67]  M. Showalter,et al.  The orbits and masses of satellites of Pluto , 2015 .

[68]  S. Desch Density of Charon formed from a disk generated by the impact of partially differentiated bodies , 2015 .

[69]  E. Shock,et al.  Prerequisites for explosive cryovolcanism on dwarf planet-class Kuiper belt objects , 2015 .

[70]  W. Henning,et al.  The interior and orbital evolution of Charon as preserved in its geologic record , 2015 .

[71]  G. Collins,et al.  Tectonic activity on Pluto after the Charon-forming impact , 2014, 1403.6377.

[72]  J. Haruyama,et al.  Strong tidal heating in an ultralow-viscosity zone at the core–mantle boundary of the Moon , 2014 .

[73]  M. Efroimsky,et al.  TIDAL DISSIPATION IN A HOMOGENEOUS SPHERICAL BODY. I. METHODS , 2014, 1406.2376.

[74]  H. Hussmann,et al.  Non-steady state tidal heating of Enceladus , 2014 .

[75]  K. Kurita,et al.  THERMAL–ORBITAL COUPLED TIDAL HEATING AND HABITABILITY OF MARTIAN-SIZED EXTRASOLAR PLANETS AROUND M STARS , 2014, 1402.2378.

[76]  Complete tidal evolution of Pluto–Charon , 2014, 1402.0625.

[77]  William M. Grundy,et al.  Spectroscopy from Space , 2014 .

[78]  M. Mellon,et al.  Science potential from a Europa lander. , 2013, Astrobiology.

[79]  Erik Asphaug,et al.  Late origin of the Saturn system , 2013 .

[80]  M. Efroimsky,et al.  TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE , 2012, 1209.1615.

[81]  M. Efroimsky,et al.  NO PSEUDOSYNCHRONOUS ROTATION FOR TERRESTRIAL PLANETS AND MOONS , 2012, 1209.1616.

[82]  David J. Tholen,et al.  THE ORBIT OF CHARON IS CIRCULAR , 2012 .

[83]  M. Efroimsky TIDAL DISSIPATION COMPARED TO SEISMIC DISSIPATION: IN SMALL BODIES, EARTHS, AND SUPER-EARTHS , 2011, 1105.3936.

[84]  Francis Nimmo,et al.  Thermal evolution of Pluto and implications for surface tectonics and a subsurface ocean , 2011 .

[85]  D. A. Patthoff,et al.  A fracture history on Enceladus provides evidence for a global ocean , 2011 .

[86]  Seattle,et al.  Tidal obliquity evolution of potentially habitable planets , 2011, 1101.2156.

[87]  R. Canup,et al.  ON A GIANT IMPACT ORIGIN OF CHARON, NIX, AND HYDRA , 2011 .

[88]  B. Militzer,et al.  Constraints on Europa's rotational dynamics from modeling of tidally-driven fractures , 2010 .

[89]  I. Jackson,et al.  Grainsize-sensitive viscoelastic relaxation in olivine: Towards a robust laboratory-based model for seismological application , 2010 .

[90]  Julie C. Castillo-Rogez,et al.  Evolution of Titan's rocky core constrained by Cassini observations , 2010 .

[91]  R. Cooper,et al.  A composite viscoelastic model for incorporating grain boundary sliding and transient diffusion creep; correlating creep and attenuation responses for materials with a fine grain size , 2010 .

[92]  C. Sotin,et al.  Evolution of Icy Satellites , 2010 .

[93]  P. Tackley,et al.  Temperature and heat flux scalings for isoviscous thermal convection in spherical geometry , 2010 .

[94]  C. Sotin,et al.  Implications of Rotation, Orbital States, Energy Sources, and Heat Transport for Internal Processes in Icy Satellites , 2010 .

[95]  O. Prieto-Ballesteros,et al.  Rheological and Thermal Properties of Icy Materials , 2010 .

[96]  W. Ip,et al.  Liquid water on Enceladus from observations of ammonia and 40Ar in the plume , 2009, Nature.

[97]  Jason C. Cook,et al.  Thermal evolution of Kuiper belt objects, with implications for cryovolcanism , 2009 .

[98]  J. Fortney,et al.  INFLATING AND DEFLATING HOT JUPITERS: COUPLED TIDAL AND THERMAL EVOLUTION OF KNOWN TRANSITING PLANETS , 2009, 0907.1268.

[99]  R. Tyler Strong ocean tidal flow and heating on moons of the outer planets , 2008, Nature.

[100]  A. Coradini,et al.  Structure and Evolution of Kuiper Belt Objects and Dwarf Planets , 2008 .

[101]  Jennifer M. Brown,et al.  Hydrothermal systems in small ocean planets. , 2007, Astrobiology.

[102]  M. Mottl,et al.  Water and astrobiology , 2007 .

[103]  J. H. Roberts,et al.  Long-Term Stability of a Subsurface Ocean on Enceladus , 2007 .

[104]  B. Romanowicz,et al.  Long-period seismology on Europa: 2. Predicted seismic response , 2006 .

[105]  T. Spohn,et al.  Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects , 2006 .

[106]  W. McKinnon On convection in ice I shells of outer Solar System bodies, with detailed application to Callisto , 2006 .

[107]  Rainer Feistel,et al.  A New Equation of State for H2O Ice Ih , 2006 .

[108]  M. W. Buie,et al.  A giant impact origin for Pluto's small moons and satellite multiplicity in the Kuiper belt , 2006, Nature.

[109]  C. Sotin,et al.  Ceres: Evolution and current state , 2005 .

[110]  O. Grasset,et al.  The ammonia–water system at high pressures: Implications for the methane of Titan , 2005 .

[111]  R. Canup,et al.  A Giant Impact Origin of Pluto-Charon , 2005, Science.

[112]  I. Jackson Laboratory measurement of seismic wave dispersion and attenuation at high pressure and temperature , 2005 .

[113]  T. Spohn,et al.  Thermal-orbital evolution of Io and Europa , 2004 .

[114]  R. Ray,et al.  Semi‐diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry , 2003 .

[115]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[116]  Otto G. Franz,et al.  The mass ratio of Charon to Pluto from Hubble Space Telescope astrometry with the fine guidance sensors , 2003 .

[117]  Nicholas C. Makris,et al.  Probing Europa's interior with natural sound sources , 2003 .

[118]  Robert L. Kovach,et al.  Seismic Detectability of a Subsurface Ocean on Europa , 2001 .

[119]  C. Sotin,et al.  Thermal convection in the outer shell of large icy satellites , 2001 .

[120]  S. Ida,et al.  Lunar accretion from an impact-generated disk , 1997, Nature.

[121]  Stephen H. Kirby,et al.  Erratum: ``Creep of water ices at planetary conditions: A compilation'' , 1997 .

[122]  G. Schubert,et al.  Composition, Internal Structure, and Thermal Evolution of Pluto and Charon , 1997 .

[123]  S. Peale,et al.  Dynamics of the Pluto-Charon Binary , 1997 .

[124]  Olivier Grasset,et al.  The Cooling Rate of a Liquid Shell in Titan's Interior , 1996 .

[125]  Louis Moresi,et al.  Numerical investigation of 2D convection with extremely large viscosity variations , 1995 .

[126]  Suga,et al.  Thermal conductivity of the Ih and XI phases of ice. , 1994, Physical review. B, Condensed matter.

[127]  P. Olson,et al.  Convection with internal heat sources and thermal turbulence in the Earth's mantle , 1994 .

[128]  Renu Malhotra,et al.  Pluto's Heliocentric Orbit , 1994 .

[129]  A. Davaille,et al.  Transient high-Rayleigh-number thermal convection with large viscosity variations , 1993, Journal of Fluid Mechanics.

[130]  Tilman Spohn,et al.  Thermal histories, compositions and internal structures of the moons of the solar system , 1986 .

[131]  D. Lin,et al.  On the origin of the Pluto–Charon system , 1981 .

[132]  W. M. Kaula Tidal dissipation by solid friction and the resulting orbital evolution , 1964 .