Descendants of Whole Genome Duplication within Gene Order Phylogeny

Genome doubling simultaneously doubles all genetic markers. Genome rearrangement phylogenetics requires that all genomes analyzed have the same set of orthologs, so that it is not possible to include doubled and unduplicated genomes in the same phylogeny. A framework for solving this difficulty requires separating out various possible local configurations of doubled and unduplicated genomes in a given phylogeny, each of which requires a different strategy for integrating genomic distance, halving and rearrangement median algorithms. In this paper we focus on the two cases where doubling precedes a speciation event and where it occurs independently in both lineages initiated by a speciation event. We apply these to a new data set containing markers that are ancient duplicates in two yeast genomes.

[1]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[2]  David Sankoff,et al.  The Reconstruction of Doubled Genomes , 2003, SIAM J. Comput..

[3]  P. Pevzner,et al.  Genome-scale evolution: reconstructing gene orders in the ancestral species. , 2002, Genome research.

[4]  D. Sredni,et al.  Differential regulation of neurogenesis by the two Xenopus GATA-1 genes , 1997, Molecular and cellular biology.

[5]  David Sankoff,et al.  Genome Halving with an Outgroup , 2006 .

[6]  Kevin P. Byrne,et al.  The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. , 2005, Genome research.

[7]  David Sankoff,et al.  Hybridization and Genome Rearrangement , 1999, CPM.

[8]  David Sankoff,et al.  Polyploids, genome halving and phylogeny , 2007, ISMB/ECCB.

[9]  R. Ojeda,et al.  Whole-genome duplications in South American desert rodents (Octodontidae) , 2004 .

[10]  David Sankoff,et al.  The ABCs of MGR with DCJ , 2008, Evolutionary bioinformatics online.

[11]  R. Ojeda,et al.  Discovery of tetraploidy in a mammal , 1999, Nature.

[12]  C. Kurtzman,et al.  Phylogenetic relationships among yeasts of the 'Saccharomyces complex' determined from multigene sequence analyses. , 2003, FEMS yeast research.

[13]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[14]  D. Soltis,et al.  Widespread genome duplications throughout the history of flowering plants. , 2006, Genome research.

[15]  B. Dujon,et al.  Genome evolution in yeasts , 2004, Nature.

[16]  S. Ohno,et al.  Evolution from fish to mammals by gene duplication. , 2009, Hereditas.

[17]  Bernard M. E. Moret,et al.  Finding an Optimal Inversion Median: Experimental Results , 2001, WABI.

[18]  Austin L. Hughes,et al.  Phylogenies of Developmentally Important Proteins Do Not Support the Hypothesis of Two Rounds of Genome Duplication Early in Vertebrate History , 1999, Journal of Molecular Evolution.

[19]  Margaret R. Thomson,et al.  Vertebrate genome evolution and the zebrafish gene map , 1998, Nature Genetics.

[20]  Karsten Hokamp,et al.  Extensive genomic duplication during early chordate evolution , 2002, Nature Genetics.

[21]  Jens Stoye,et al.  A Unifying View of Genome Rearrangements , 2006, WABI.