On Explicit Substitution and Names (Extended Abstract)

Calculi with explicit substitutions have found widespread acceptance as a basis for abstract machines for functional languages. In this paper we investigate the relations between variants with de Bruijnnumbers, with variable names, with reduction based on raw expressions and calculi with equational judgements. We show the equivalence between these variants, which is crucial in establishing the correspondence between the semantics of the calculus and its implementations.

[1]  Paul-Andr Typed -calculi with Explicit Substitutions May Not Terminate , 1995 .

[2]  Alejandro Ríos,et al.  A Lambda-Calculus à la de Bruijn with Explicit Substitutions , 1995, PLILP.

[3]  C. J. Bloo,et al.  Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection , 1995 .

[4]  Pierre-Louis Curien,et al.  An Abstract Framework for Environment Machines , 1991, Theor. Comput. Sci..

[5]  CurienPierre-Louis,et al.  Confluence properties of weak and strong calculi of explicit substitutions , 1996 .

[6]  Pierre Lescanne,et al.  From λσ to λν: a journey through calculi of explicit substitutions , 1994, POPL '94.

[7]  Jean-Jacques Lévy,et al.  Confluence properties of weak and strong calculi of explicit substitutions , 1996, JACM.

[8]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[9]  Eike Ritter,et al.  Normalization for Typed Lambda Calculi with Explicit Substitution , 1993, CSL.

[10]  Per Martin-Löf,et al.  Intuitionistic type theory , 1984, Studies in proof theory.

[11]  Thomas Streicher,et al.  Correctness and completeness of a categorical semantics of the calculus of constructions , 1989 .

[12]  Martín Abadi,et al.  Explicit substitutions , 1989, POPL '90.

[13]  Catarina Coquand,et al.  From Semantics to Rules: A Machine Assisted Analysis , 1993, CSL.

[14]  Thérèse Hardin,et al.  Confluence Results for the Pure Strong Categorical Logic CCL: lambda-Calculi as Subsystems of CCL , 1989, Theor. Comput. Sci..

[15]  J. H. Geuvers Logics and type systems , 1993 .

[16]  Paul-André Melliès Typed lambda-calculi with explicit substitutions may not terminate , 1995, TLCA.