On Explicit Substitution and Names (Extended Abstract)
暂无分享,去创建一个
[1] Paul-Andr. Typed -calculi with Explicit Substitutions May Not Terminate , 1995 .
[2] Alejandro Ríos,et al. A Lambda-Calculus à la de Bruijn with Explicit Substitutions , 1995, PLILP.
[3] C. J. Bloo,et al. Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection , 1995 .
[4] Pierre-Louis Curien,et al. An Abstract Framework for Environment Machines , 1991, Theor. Comput. Sci..
[5] CurienPierre-Louis,et al. Confluence properties of weak and strong calculi of explicit substitutions , 1996 .
[6] Pierre Lescanne,et al. From λσ to λν: a journey through calculi of explicit substitutions , 1994, POPL '94.
[7] Jean-Jacques Lévy,et al. Confluence properties of weak and strong calculi of explicit substitutions , 1996, JACM.
[8] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[9] Eike Ritter,et al. Normalization for Typed Lambda Calculi with Explicit Substitution , 1993, CSL.
[10] Per Martin-Löf,et al. Intuitionistic type theory , 1984, Studies in proof theory.
[11] Thomas Streicher,et al. Correctness and completeness of a categorical semantics of the calculus of constructions , 1989 .
[12] Martín Abadi,et al. Explicit substitutions , 1989, POPL '90.
[13] Catarina Coquand,et al. From Semantics to Rules: A Machine Assisted Analysis , 1993, CSL.
[14] Thérèse Hardin,et al. Confluence Results for the Pure Strong Categorical Logic CCL: lambda-Calculi as Subsystems of CCL , 1989, Theor. Comput. Sci..
[15] J. H. Geuvers. Logics and type systems , 1993 .
[16] Paul-André Melliès. Typed lambda-calculi with explicit substitutions may not terminate , 1995, TLCA.