Mobile devices have been at the forefront of Intelligent Farming because of its ubiquitous nature. Applications on
precision farming have been developed on smartphones to allow small farms to monitor environmental parameters
surrounding crops. Mobile devices are used for most of these applications, collecting data to be sent to the cloud for
storage, analysis, modeling and visualization. However, with the issue of weak and intermittent connectivity in
geographically challenged areas of the Philippines, the solution is to provide analysis on the phone itself. Given this, the
farmer gets a real time response after data submission. Though Machine Learning is promising, hardware constraints in
mobile devices limit the computational capabilities, making model development on the phone restricted and challenging.
This study discusses the development of a Machine Learning based mobile application using OpenCV libraries. The
objective is to enable the detection of Fusarium oxysporum cubense (Foc) in juvenile and asymptomatic bananas using
images of plant parts and microscopic samples as input. Image datasets of attached, unattached, dorsal, and ventral views
of leaves were acquired through sampling protocols. Images of raw and stained specimens from soil surrounding the
plant, and sap from the plant resulted to stained and unstained samples respectively. Segmentation and feature extraction
techniques were applied to all images. Initial findings show no significant differences among the different feature
extraction techniques. For differentiating infected from non-infected leaves, KNN yields highest average accuracy, as
opposed to Naive Bayes and SVM. For microscopic images using MSER feature extraction, KNN has been tested as
having a better accuracy than SVM or Naive-Bayes.
[1]
Steve Feng,et al.
Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning.
,
2015,
Lab on a chip.
[2]
García-GómezJuan Miguel,et al.
A Mobile Health Application to Predict Postpartum Depression Based on Machine Learning
,
2015
.
[3]
Erdogan Gulari,et al.
Gene-Z: a device for point of care genetic testing using a smartphone.
,
2012,
Lab on a chip.
[4]
Markus Aleksy.
An Approach to Rapid Prototyping of Mobile Applications
,
2013,
2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA).