A geometric optics method for high-frequency electromagnetic fields computations near fold caustics: part II. the energy
暂无分享,去创建一个
Jean-David Benamou | Rémi Sentis | J. Benamou | Ian Solliec | O. Lafitte | Ian Solliec | Olivier Lafitte | Rémi Sentis
[1] Ian Solliec. Optique géométrique eulérienne et calcul d'énérgie électromagnétique en présence de caustiques de type pli , 2003 .
[2] Jacques-Louis Lions,et al. Mathematical Analysis and Numerical Methods for Science and Technology : Volume 4 Integral Equations and Numerical Methods , 2000 .
[3] Bruno Després,et al. Contact Discontinuity Capturing Schemes for Linear Advection and Compressible Gas Dynamics , 2002, J. Sci. Comput..
[4] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[5] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[6] W. Kruer,et al. The Physics of Laser Plasma Interactions , 2019 .
[7] J. Benamou,et al. A geometrical optics-based numerical method for high frequency electromagnetic fields computations near fold caustics--Part I , 2003 .
[8] Donald Ludwig,et al. Uniform asymptotic expansions at a caustic , 1966 .
[9] Johannes J. Duistermaat,et al. Oscillatory integrals, lagrange immersions and unfolding of singularities , 1974 .
[10] C. DeWitt-Morette,et al. Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .
[11] J. Benamou. Direct computation of multivalued phase space solutions for Hamilton-Jacobi equations , 1999 .