On Regularization via Frame Decompositions with Applications in Tomography

In this paper, we consider linear ill-posed problems in Hilbert spaces and their regularization via frame decompositions, which are generalizations of the singular-value decomposition. In particular, we prove convergence for a general class of continuous regularization methods and derive convergence rates under both a-priori and a-posteriori parameter choice rules. Furthermore, we apply our derived results to a standard tomography problem based on the Radon transform.

[1]  M. Abramowitz,et al.  Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables , 1966 .

[2]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[3]  Frank Wübbeling,et al.  Inverse und schlecht gestellte Probleme , 2011 .

[4]  D. Donoho Nonlinear Solution of Linear Inverse Problems by Wavelet–Vaguelette Decomposition , 1995 .

[5]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[6]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[7]  B. Silverman,et al.  Wavelet decomposition approaches to statistical inverse problems , 1998 .

[8]  E. Candès,et al.  Recovering edges in ill-posed inverse problems: optimality of curvelet frames , 2002 .

[9]  Frame decompositions of bounded linear operators in Hilbert spaces with applications in tomography , 2020, Inverse Problems.

[10]  Christoph Koutschan,et al.  On the Singular Value Decomposition of n-Fold Integration Operators , 2020 .

[11]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[12]  Per Christian Hansen,et al.  AIR Tools II: algebraic iterative reconstruction methods, improved implementation , 2017, Numerical Algorithms.

[13]  emontmej,et al.  High Performance Computing , 2003, Lecture Notes in Computer Science.

[14]  Jurgen Frikel,et al.  Sparse regularization in limited angle tomography , 2011, 1109.0385.

[15]  Namyong Lee,et al.  Wavelet-vaguelette decompositions and homogeneous equations , 1997 .

[16]  Ronny Ramlau,et al.  A Frame Decomposition of the Atmospheric Tomography Operator , 2020, ArXiv.

[17]  Johannes Schwab,et al.  Regularization of Inverse Problems by Filtered Diagonal Frame Decomposition , 2020, ArXiv.

[18]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[19]  A. A. Kudryavtsev,et al.  Estimation of the Loss Function When Using Wavelet-Vaguelette Decomposition for Solving Ill-Posed Problems , 2019, Journal of Mathematical Sciences.

[20]  P. Maass,et al.  Wavelet-Galerkin methods for ill-posed problems , 1996 .

[21]  Markus Haltmeier,et al.  Sparse regularization of inverse problems by operator-adapted frame thresholding , 2019 .

[22]  Glenn R. Easley,et al.  Radon Transform Inversion using the Shearlet Representation , 2010 .

[23]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[24]  Markus Haltmeier,et al.  Efficient regularization with wavelet sparsity constraints in photoacoustic tomography , 2018 .