On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems

In this paper, we consider a semi-infinite multiobjective optimization problem with more than two differentiable objective functions and uncertain constraint functions, which is called a robust semi-infinite multiobjective optimization problem and give its robust counterpart $${\mathrm{(RSIMP)}}$$(RSIMP) of the problem, which is regarded as the worst case of the uncertain semi-infinite multiobjective optimization problem. We prove a necessary optimality theorem for a weakly robust efficient solution of $${\mathrm{(RSIMP)}} $$(RSIMP), and then give a sufficient optimality theorem for a weakly robust efficient solution of $${\mathrm{(RSIMP)}}$$(RSIMP). We formulate a Wolfe type dual problem of $${\mathrm{(RSIMP)}}$$(RSIMP) and give duality results which hold between $${\mathrm{(RSIMP)}}$$(RSIMP) and its dual problem.

[1]  Jae-Hyoung Lee,et al.  On quasi $$\epsilon $$ϵ-solution for robust convex optimization problems , 2017, Optim. Lett..

[2]  Miguel A. Goberna,et al.  Constraint qualifications in convex vector semi-infinite optimization , 2016, Eur. J. Oper. Res..

[3]  Marco A. López,et al.  Robust linear semi-infinite programming duality under uncertainty , 2013, Math. Program..

[4]  J. Aubin Mathematical methods of game and economic theory , 1979 .

[5]  Vaithilingam Jeyakumar,et al.  Characterizing Robust Solution Sets of Convex Programs under Data Uncertainty , 2015, J. Optim. Theory Appl..

[6]  Thai Doan Chuong,et al.  Optimality and duality for robust multiobjective optimization problems , 2016 .

[7]  Vaithilingam Jeyakumar,et al.  Strong duality in robust semi-definite linear programming under data uncertainty , 2014 .

[8]  Satoshi Suzuki,et al.  Surrogate duality for robust optimization , 2013, Eur. J. Oper. Res..

[9]  Vaithilingam Jeyakumar,et al.  Robust conjugate duality for convex optimization under uncertainty with application to data classifi , 2011 .

[10]  Amir Beck,et al.  Duality in robust optimization: Primal worst equals dual best , 2009, Oper. Res. Lett..

[11]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[12]  Arkadi Nemirovski,et al.  Selected topics in robust convex optimization , 2007, Math. Program..

[13]  Vaithilingam Jeyakumar,et al.  Strong Duality in Robust Convex Programming: Complete Characterizations , 2010, SIAM J. Optim..

[14]  Do Sang Kim,et al.  Nonsmooth Semi-infinite Multiobjective Optimization Problems , 2014, J. Optim. Theory Appl..

[15]  Vaithilingam Jeyakumar,et al.  Characterizing robust set containments and solutions of uncertain linear programs without qualifications , 2010, Oper. Res. Lett..

[16]  Arkadi Nemirovski,et al.  Robust optimization – methodology and applications , 2002, Math. Program..

[17]  Vaithilingam Jeyakumar,et al.  Robust Solutions of MultiObjective Linear Semi-Infinite Programs under Constraint Data Uncertainty , 2014, SIAM J. Optim..

[18]  Gue Myung Lee,et al.  On $${\epsilon}$$ -solutions for convex optimization problems with uncertainty data , 2012 .

[19]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[20]  Vaithilingam Jeyakumar,et al.  Robust duality for generalized convex programming problems under data uncertainty , 2012 .

[21]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.