Parameter estimation in active plate structures

In this paper two non-destructive methods for elastic and piezoelectric parameter estimation in active plate structures with surface bonded piezoelectric patches are presented. These methods rely on experimental undamped natural frequencies of free vibration. The first solves the inverse problem through gradient based optimization techniques, while the second is based on a metamodel of the inverse problem, using artificial neural networks. A numerical higher order finite element laminated plate model is used in both methods and results are compared and discussed through a simulated and an experimental test case.

[1]  Krishnan Balasubramaniam,et al.  Inversion of composite material elastic constants from ultrasonic bulk wave phase velocity data using genetic algorithms , 1998 .

[2]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .

[3]  Eduardo D. Sontag,et al.  Feedback Stabilization Using Two-Hidden-Layer Nets , 1991, 1991 American Control Conference.

[4]  J. N. Reddy,et al.  On laminated composite plates with integrated sensors and actuators , 1999 .

[5]  Carlos A. Mota Soares,et al.  BUCKLING AND DYNAMIC BEHAVIOUR OF LAMINATED COMPOSITE STRUCTURES USING A DISCRETE HIGHER-ORDER DISPLACEMENT MODEL , 1999 .

[6]  Zhongya Zhang,et al.  Artificial neural networks applied to polymer composites: a review , 2003 .

[7]  Janis Auzins,et al.  Identification of Elastic Properties of Composite Laminates , 2003 .

[8]  Pauli Pedersen,et al.  Identification Techniques in Composite Laminates , 1999 .

[9]  C. M. Mota Soares,et al.  Identification of material properties of composite plate specimens , 1993 .

[10]  José Herskovits,et al.  Development of a finite element model for the identification of mechanical and piezoelectric properties through gradient optimisation and experimental vibration data , 2002 .

[11]  John Anthony Mitchell,et al.  A refined hybrid plate theory for composite laminates with piezoelectric laminae , 1995 .

[12]  Mohammad Bagher Menhaj,et al.  Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.

[13]  Jean Piranda,et al.  Application of model updating techniques in dynamics for the identification of elastic constants of composite materials , 1999 .

[14]  Xu Han,et al.  An inverse procedure for determination of material constants of composite laminates using elastic waves , 2002 .

[15]  Ayech Benjeddou,et al.  Advances in piezoelectric finite element modeling of adaptive structural elements: a survey , 2000 .

[16]  Ayech Benjeddou,et al.  Advances in Hybrid Active-Passive Vibration and Noise Control Via Piezoelectric and Viscoelastic Constrained Layer Treatments , 2001 .

[17]  Harvey Thomas Banks,et al.  The estimation of material and patch parameters in a PDE-based circular plate model , 1997 .

[18]  A. Araújo,et al.  Characterization of material parameters of composite plate specimens using optimization and experimental vibrational data , 1996 .

[19]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[20]  José Herskovits,et al.  Interior point algorithms for nonlinear constrained least squares problems , 2004 .

[21]  Xu Han,et al.  DETERMINATION OF ELASTIC CONSTANTS OF ANISOTROPIC LAMINATED PLATES USING ELASTIC WAVES AND A PROGRESSIVE NEURAL NETWORK , 2002 .

[22]  Harvey Thomas Banks,et al.  Smart material structures: Modeling, estimation, and control , 1996 .

[23]  José Herskovits,et al.  Combined numerical-experimental model for the identification of mechanical properties of laminated structures , 2000 .

[24]  J. Herskovits Feasible Direction Interior-Point Technique for Nonlinear Optimization , 1998 .