Performance and sensitivity of vortex coronagraphs on segmented space telescopes

The detection of molecular species in the atmospheres of earth-like exoplanets orbiting nearby stars requires an optical system that suppresses starlight and maximizes the sensitivity to the weak planet signals at small angular separations. Achieving sufficient contrast performance on a segmented aperture space telescope is particularly challenging due to unwanted diffraction within the telescope from amplitude and phase discontinuities in the pupil. Apodized vortex coronagraphs are a promising solution that theoretically meet the performance needs for high contrast imaging with future segmented space telescopes. We investigate the sensitivity of apodized vortex coronagraphs to the expected aberrations, including segment co-phasing errors in piston and tip/tilt as well as other low-order and mid-spatial frequency aberrations. Coronagraph designs and their associated telescope requirements are identified for conceptual HabEx and LUVOIR telescope designs.

[1]  Alexis Carlotti,et al.  Shaped pupil Lyot coronagraphs: high-contrast solutions for restricted focal planes , 2016, 1601.05121.

[2]  Olivier Guyon,et al.  The Habitable Exoplanet (HabEx) Imaging Mission: preliminary science drivers and technical requirements , 2016, Astronomical Telescopes + Instrumentation.

[3]  M. Shao,et al.  HIGH-DYNAMIC-RANGE IMAGING USING A DEFORMABLE MIRROR FOR SPACE CORONOGRAPHY , 1995, astro-ph/9502042.

[4]  D. Mawet,et al.  Annular Groove Phase Mask Coronagraph , 2005 .

[5]  G. Swartzlander,et al.  Optical vortex coronagraph. , 2005, Optics letters.

[6]  David M. Shemo,et al.  Optical Vectorial Vortex Coronagraphs using Liquid Crystal Polymers: theory, manufacturing and laboratory demonstration. , 2009, Optics express.

[7]  von F. Zernike Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode , 1934 .

[8]  Dimitri Mawet,et al.  Optimized focal and pupil plane masks for vortex coronagraphs on telescopes with obstructed apertures , 2015, SPIE Optical Engineering + Applications.

[9]  Dimitri Mawet,et al.  CHARACTERIZATION OF THE INNER DISK AROUND HD 141569 A FROM KECK/NIRC2 L-BAND VORTEX CORONAGRAPHY , 2016, 1612.03091.

[10]  Claude Aime,et al.  Phase mask coronagraphy using a Mach-Zehnder interferometer , 2009 .

[11]  M. McElwain,et al.  LOWER LIMITS ON APERTURE SIZE FOR AN EXOEARTH DETECTING CORONAGRAPHIC MISSION , 2015, 1506.01723.

[12]  Mamadou N'Diaye,et al.  Polynomial Apodizers for Centrally Obscured Vortex Coronagraphs , 2017, 1703.02994.

[13]  D. Mawet,et al.  RING-APODIZED VORTEX CORONAGRAPHS FOR OBSCURED TELESCOPES. I. TRANSMISSIVE RING APODIZERS , 2013, 1309.3328.

[14]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[15]  D. Mawet,et al.  An image of an exoplanet separated by two diffraction beamwidths from a star , 2010, Nature.

[16]  Jeffrey Jewell,et al.  Apodized vortex coronagraph designs for segmented aperture telescopes , 2016, Astronomical Telescopes + Instrumentation.

[17]  Dimitri Mawet,et al.  Observing Exoplanets with High Dispersion Coronagraphy. I. The Scientific Potential of Current and Next-generation Large Ground and Space Telescopes , 2017, 1703.00582.

[18]  Garreth J. Ruane,et al.  Optimal Phase Masks for High Contrast Imaging Applications , 2016 .

[19]  Dimitri Mawet,et al.  The W. M. Keck Observatory Infrared Vortex Coronagraph and a First Image of HIP 79124 B , 2016 .

[20]  D. Mawet,et al.  Observing Exoplanets with High-dispersion Coronagraphy. II. Demonstration of an Active Single-mode Fiber Injection Unit , 2017, 1703.00583.

[21]  John E. Krist,et al.  The Vector Vortex Coronagraph: sensitivity to central obscuration, low-order aberrations, chromaticism, and polarization , 2010, Astronomical Telescopes + Instrumentation.

[22]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[23]  David M. Shemo,et al.  THE VECTOR VORTEX CORONAGRAPH: LABORATORY RESULTS AND FIRST LIGHT AT PALOMAR OBSERVATORY , 2009, 0912.2287.

[24]  Kevin France,et al.  Initial technology assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) mission concept study , 2016, Astronomical Telescopes + Instrumentation.

[25]  E. Serabyn,et al.  Deep Imaging Search for Planets Forming in the TW Hya Protoplanetary Disk with the Keck/NIRC2 Vortex Coronagraph , 2017, 1706.07489.