Neural Coding of Leg Proprioception in Drosophila

[1]  Die chordotonalen Sinnesorgane und das Gehör der Insecten , 1881 .

[2]  C. Sherrington Integrative Action of the Nervous System , 1907 .

[3]  J. Brobeck The Integrative Action of the Nervous System , 1948, The Yale Journal of Biology and Medicine.

[4]  W. Burke,et al.  An Organ for Proprioception and Vibration Sense in Carcinus Maenas , 1954 .

[5]  N. Kiang,et al.  Stimulus coding in the auditory nerve and cochlear nucleus. , 1965 .

[6]  P. Usherwood,et al.  Structure and Physiology of a Chordotonal Organ in the Locust Leg , 1968 .

[7]  M. Burns Structure and physiology of the locust femoral chordotonal organ. , 1974, Journal of insect physiology.

[8]  I. A. Boyd The isolated mammalian muscle spindle , 1980, Trends in Neurosciences.

[9]  H. Römer Tonotopic organization of the auditory neuropile in the bushcricket Tettigonia viridissima , 1983, Nature.

[10]  U. Bässler,et al.  Physiology of the Femoral Chordotonal Organ in the Stick Insect, Cuniculina Impigra , 1985 .

[11]  S. Zill,et al.  Plasticity and proprioception in insects. I. Responses and cellular properties of individual receptors of the locust metathoracic femoral chordotonal organ. , 1985, The Journal of experimental biology.

[12]  P. R. Burgess,et al.  Joint angle signaling by muscle spindle receptors , 1986, Brain Research.

[13]  U. Bässler Functional principles of pattern generation for walking movements of stick insect forelegs: the role of the femoral chordotonal organ afferences , 1988 .

[14]  D G Stuart,et al.  Animal solutions to problems of movement control: the role of proprioceptors. , 1988, Annual review of neuroscience.

[15]  H. Pflüger,et al.  The femoral chordotonal organ: A bifunctional orthopteran (Locusta migratoria) sense organ? , 1989 .

[16]  N Suga,et al.  Principles of auditory information-processing derived from neuroethology. , 1989, The Journal of experimental biology.

[17]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[18]  L. H. Field Mechanism for range fractionation in chordotonal organs of Locusta migratoria (L) and Valanga sp. (Orthoptera : Acrididae) , 1991 .

[19]  FUNCTIONAL SPECIALIZATION OF THE SCOLOPARIA OF THE FEMORAL CHORDOTONAL ORGAN IN STICK INSECTS , 1992 .

[20]  S. Shanbhag,et al.  Ultrastructure of the femoral chordotonal organs and their novel synaptic organization in the legs of Drosophila melanogaster Meigen (Diptera : Drosophilidae) , 1992 .

[21]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[22]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[23]  P. L. Newland,et al.  Dynamics of neurons controlling movements of a locust hind leg: Wiener kernel analysis of the responses of proprioceptive afferents. , 1995, Journal of neurophysiology.

[24]  M. Burrows,et al.  Proprioceptive sensory neurons of a locust leg receive rhythmic presynpatic inhibition during walking , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  D. Shepherd,et al.  Central afferent projections of proprioceptive sensory neurons in Drosophila revealed with the enhancer‐trap technique , 1996, The Journal of comparative neurology.

[26]  R. Murphey,et al.  Mutations in the 8 kDa dynein light chain gene disrupt sensory axon projections in the Drosophila imaginal CNS. , 1996, Development.

[27]  J. T. Watson,et al.  Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: II. Fast running , 1997, Journal of Comparative Physiology A.

[28]  J. T. Watson,et al.  Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis : I. Slow running , 1997, Journal of Comparative Physiology A.

[29]  M. Burrows,et al.  Processing of tactile information in neuronal networks controlling leg movements of the Locust. , 1997, Journal of insect physiology.

[30]  M. Juusola,et al.  Adaptation properties of two types of sensory neurons in a spider mechanoreceptor organ. , 1998, Journal of neurophysiology.

[31]  T. Matheson,et al.  Chordotonal Organs of Insects , 1998 .

[32]  Eric I. Knudsen,et al.  Maps versus clusters: different representations of auditory space in the midbrain and forebrain , 1999, Trends in Neurosciences.

[33]  A. Grinvald,et al.  Linking spontaneous activity of single cortical neurons and the underlying functional architecture. , 1999, Science.

[34]  W. Stein,et al.  Physiology of vibration-sensitive afferents in the femoral chordotonal organ of the stick insect , 1999, Journal of Comparative Physiology A.

[35]  A B Vallbo,et al.  Directional tuning of human forearm muscle afferents during voluntary wrist movements , 2001, The Journal of physiology.

[36]  K. Pearson,et al.  The role of proprioceptive feedback in the regulation and adaptation of locomotor activity. , 2002, Advances in experimental medicine and biology.

[37]  Thomas Matheson,et al.  Range fractionation in the locust metathoracic femoral chordotonal organ , 1992, Journal of Comparative Physiology A.

[38]  Thomas Matheson,et al.  Responses and locations of neurones in the locust metathoracic femoral chordotonal organ , 1990, Journal of Comparative Physiology A.

[39]  Central projections of primary auditory fibres in Tettigoniidae (Orthoptera: Ensifera) , 1983, Journal of comparative physiology.

[40]  J. Schmitz,et al.  Load sensing and control of posture and locomotion. , 2004, Arthropod structure & development.

[41]  Sasha N. Zill,et al.  Evolutionary adaptation of a reflex system: sensory hysteresis counters muscle ‘catch’ tension , 1988, Journal of Comparative Physiology A.

[42]  L. Luo,et al.  Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation , 2007, Cell.

[43]  U. Windhorst Muscle proprioceptive feedback and spinal networks , 2007, Brain Research Bulletin.

[44]  D. Eberl,et al.  Development of Johnston's organ in Drosophila. , 2007, The International journal of developmental biology.

[45]  Tobias Breuninger,et al.  Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina , 2009, Pflügers Archiv - European Journal of Physiology.

[46]  Manuel Guizar-Sicairos,et al.  Efficient subpixel image registration algorithms. , 2008, Optics letters.

[47]  Hidehiko K. Inagaki,et al.  The neural basis of Drosophila gravity-sensing and hearing , 2009, Nature.

[48]  David J. Anderson,et al.  Distinct sensory representations of wind and near-field sound in the Drosophila brain , 2009, Nature.

[49]  Stephan Saalfeld,et al.  Globally optimal stitching of tiled 3D microscopic image acquisitions , 2009, Bioinform..

[50]  T. Matheson,et al.  Functional recovery of aimed scratching movements after a graded proprioceptive manipulation , 2009 .

[51]  A. Fairhall,et al.  Encoding properties of haltere neurons enable motion feature detection in a biological gyroscope , 2010, Proceedings of the National Academy of Sciences.

[52]  廣瀬雄一,et al.  Neuroscience , 2019, Workplace Attachments.

[53]  C. Montell,et al.  Fine Thermotactic Discrimination between the Optimal and Slightly Cooler Temperatures via a TRPV Channel in Chordotonal Neurons , 2010, The Journal of Neuroscience.

[54]  Kathleen E Cullen,et al.  The neural encoding of self-motion , 2011, Current Opinion in Neurobiology.

[55]  J. Douglas Armstrong,et al.  Bioinformatics Applications Note Systems Biology Simple Neurite Tracer: Open Source Software for Reconstruction, Visualization and Analysis of Neuronal Processes , 2022 .

[56]  P. Lawrence,et al.  Substrate-Borne Vibratory Communication during Courtship in Drosophila melanogaster , 2012, Current Biology.

[57]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[58]  S. Gandevia,et al.  The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. , 2012, Physiological reviews.

[59]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[60]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[61]  R. Mann,et al.  Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster , 2013, eLife.

[62]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[63]  Paul S. Weiss,et al.  The Brain Activity Map , 2013, Science.

[64]  A. Büschges,et al.  Inter-leg coordination in the control of walking speed in Drosophila , 2013, Journal of Experimental Biology.

[65]  Azusa Kamikouchi,et al.  Neuronal encoding of sound, gravity, and wind in the fruit fly , 2013, Journal of Comparative Physiology A.

[66]  D. Ginty,et al.  The Sensory Neurons of Touch , 2013, Neuron.

[67]  G. Courtine,et al.  Muscle Spindle Feedback Directs Locomotor Recovery and Circuit Reorganization after Spinal Cord Injury , 2014, Cell.

[68]  Jörg T Albert,et al.  Hearing in Drosophila , 2015, Current Opinion in Neurobiology.

[69]  Aljoscha Nern,et al.  Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system , 2015, Proceedings of the National Academy of Sciences.

[70]  Nicholas A. Steinmetz,et al.  Diverse coupling of neurons to populations in sensory cortex , 2015, Nature.

[71]  M. Arbelo,et al.  Comparative histology of muscle in free ranging cetaceans: shallow versus deep diving species , 2015, Scientific Reports.

[72]  K. Svoboda,et al.  A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging , 2016, bioRxiv.

[73]  Rachel I. Wilson,et al.  Parallel Transformation of Tactile Signals in Central Circuits of Drosophila , 2016, Cell.

[74]  Rachel I. Wilson,et al.  Mechanosensation and Adaptive Motor Control in Insects , 2016, Current Biology.

[75]  L. Mahadevan,et al.  Recovery of locomotion after injury in Drosophila melanogaster depends on proprioception , 2016, Journal of Experimental Biology.

[76]  P. Hill,et al.  Where Can I Fi Nd out More? , 2022 .

[77]  H. Otsuna,et al.  Topological and modality-specific representation of somatosensory information in the fly brain , 2017, Science.

[78]  Kevin J Mann,et al.  Whole-Brain Calcium Imaging Reveals an Intrinsic Functional Network in Drosophila , 2017, Current Biology.

[79]  Salil S. Bidaye,et al.  Six-legged walking in insects: how CPGs, peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms. , 2018, Journal of neurophysiology.

[80]  Mikhail Kislin,et al.  Fast animal pose estimation using deep neural networks , 2018, Nature Methods.

[81]  Paola Patella,et al.  Functional Maps of Mechanosensory Features in the Drosophila Brain , 2018, Current Biology.

[82]  John C. Tuthill,et al.  Proprioception , 2018, Current Biology.