Fault detection and isolation in DFIG driven by a wind turbine with a variable rotor resistance

This paper presents a new approach to detect and isolate the current sensor faults, a doubly fed induction generator (DFIG) for a wind turbine application. And to detect the variable resistance faults. A method using an unknown input of multiple observers described via Takagi-Sugeno (T-S) multiple models. A bank of multiple observers scheme (DOS) generates a set of residuals for detection and isolation of sensor faults which can affect a TS model. A decision system is used to the process the residual vector to detection and isolation faults. The stability and the performance of the multiple models are formulated in terms of Linear Matrix Inequalities (LMIs). The approach is validated using Matlab software to modeling and simulation of a DFIG.

[1]  Kanungo Barada Mohanty,et al.  Doubly-Fed Induction Generator for Variable Speed Wind Energy Conversion Systems- Modeling & Simulation , 2010 .

[2]  Smaïl Bachir Contribution au diagnostic de la machine asynchrone par estimation paramétrique , 2002 .

[3]  Houcine Chafouk,et al.  Unknown input observer for detecting current sensor faults for a DFIG in wind turbine , 2012 .

[4]  Pierre Borne,et al.  Switching LPV Controllers for a Variable Speed Pitch Regulated Wind Turbine , 2006 .

[5]  Houcine Chafouk,et al.  Fault detection and isolation using Kalman filter bank for a wind turbine generator , 2011, 2011 19th Mediterranean Conference on Control & Automation (MED).

[6]  Peter Fogh Odgaard,et al.  Fault isolation in parallel coupled wind turbine converters , 2010, 2010 IEEE International Conference on Control Applications.

[7]  Friedrich Wilhelm Fuchs,et al.  Doubly Fed Induction Generator Model-Based Sensor Fault Detection and Control Loop Reconfiguration , 2009, IEEE Transactions on Industrial Electronics.

[8]  Dimitri Lefebvre,et al.  Doubly fed induction generator fault diagnosis using unknown input Takagi-Sugeno observer , 2013, 2013 International Conference on Control, Decision and Information Technologies (CoDIT).

[9]  Michel Kinnaert,et al.  Sensor fault detection and isolation in doubly-fed induction generators accounting for parameter variations , 2011 .

[10]  Peter Fogh Odgaard,et al.  Unknown Input Observer Based Scheme for Detecting Faults in a Wind Turbine Converter , 2009 .

[11]  Jakob Stoustrup,et al.  Linear parameter varying control of wind turbines covering both partial load and full load conditions , 2009 .

[12]  Stéphane Ploix,et al.  Fault diagnosis and fault tolerant control , 2007 .

[13]  Abdel Aitouche,et al.  Unknown Input Observer with Fuzzy Fault Tolerant Control for Wind Energy System , 2012 .

[14]  K. Shashidhar Reddy,et al.  Doubly-Fed Induction Generator for Variable Speed Wind Energy Conversion Systems- Modeling & Simulation , 2012 .

[15]  Michel Verhaegen,et al.  Sensor Fault Diagnosis of Wind Turbines for Fault Tolerant , 2008 .

[16]  Abdul Azim Sobaih,et al.  An intelligent maximum power extraction algorithm for hybrid wind–diesel-storage system , 2010 .