Oxygen isotope studies of achondrites

Abstract Oxygen isotope abundances provide a powerful tool for recognizing genetic relationships among meteorites. Among the differentiated achondrites, three isotopic groups are recognized: (l ) SNC (Mars), (2) Earth and Moon, and (3) HED (howardites, eucrites, diogenites). The HED group also contains the mesosiderites, main-group pallasites, and silicates from IIIAB irons. The angrites may be marginally resolvable from the HED group. Within each of these groups, internal geologic processes give rise to isotopic variations along a slope- 1 2 fractionation line, as is well known for terrestrial materials. Variations of Δ17O from one planet to another are inherited from the inhomogeneities in the solar nebula, as illustrated by the isotopic compositions of chondrites and their constituents. Among the undifferentiated achondrites, five isotopic groups are found: (1) aubrites, (2) winonaites and IAB-IIICD irons, (3) brachinites, (4) acapulcoites and lodranites, and (5) ureilites. The isotopic compositions of aubrites coincide with the Earth and Moon, and also with the enstatite chondrites. These bodies apparently were derived from a. common reservoir, the isotopic composition of which was established at the chondrule scale by nebular processes. Isotopic similarities between chondrites and achondrites are seen only for the following instances: (1) enstatite chondrites and aubrites, (2) H chondrites and HE irons, and (3) L or LL chondrites and IVA irons. The isotopic data also support the following genetic associations: (1) winonaites and IAB-IIICD irons, (2) acapulcoites and lodranites, and (3) ureilites and dark inclusions of C3 chondrites. An attempt to reconcile the whole-planet isotopic compositions of Earth, Mars, and the eucrite parent body with mixing models of their chemical compositions failed. It is not possible to satisfy both the chemical and isotopic compositions of the terrestrial planets using known primitive Solar System components.

[1]  G. Wasserburg,et al.  A precise 87Rb87Sr age and initial 87Sr86Sr for the Colomera iron meteorite , 1970 .

[2]  R. Clayton,et al.  Mechanisms of hydrothermal crystallization of quartz at 250°C and 15 kbar , 1978 .

[3]  C. Pillinger,et al.  Constraints on the formation conditions of iron meteorites based on concentrations and isotopic compositions of nitrogen , 1993 .

[4]  A. G. W. Cameron,et al.  The origin of the moon and the single-impact hypothesis III. , 1991 .

[5]  T. Bunch Petrography and petrology of basaltic achondrite polymict breccias /Howardites/ , 1975 .

[6]  R. Clayton,et al.  Oxygen isotopes in eucrites, shergottites, nakhlites, and chassignites , 1983 .

[7]  H. Voshage Investigations on cosmic-ray-produced nuclides in iron meteorites, 2. New results on41K/40K-4He/21Ne exposure ages and the interpretation of age distributions , 1978 .

[8]  J. Wasson,et al.  Classification and origin of IAB and IIICD iron meteorites , 1995 .

[9]  H. Takeda,et al.  The polymict eucrites , 1984 .

[10]  M. Thiemens,et al.  Multi‐isotope study of the O(1 D) + CO2 exchange and stratospheric consequences , 1993 .

[11]  William R. Ward,et al.  The Origin of the Moon , 1976 .

[12]  Hideyasu,et al.  Yamato-74063: Chondritic meteorite classified between E and H chondrite groups , 1991 .

[13]  R. Clayton,et al.  The CR (Renazzo-type) carbonaceous chondrite group and its implications , 1993 .

[14]  J. Stehr,et al.  Measurement of heavy isotope enrichment in tropospheric ozone , 1995 .

[15]  J. Wasson,et al.  Compositions of enstatite (EH3, EH4,5 and EL6) chondrites: Implications regarding their formation , 1986 .

[16]  F. Robert,et al.  Oxygen isotopic homogeneity of the Earth: new evidence , 1992 .

[17]  J. Farquhar,et al.  Strategies for high-temperature oxygen isotope thermometry: a worked example from the Laramie Anorthosite Complex, Wyoming, USA , 1993 .

[18]  R. Clayton,et al.  DISTRIBUTION OF THE PRE-SOLAR COMPONENT IN ALLENDE AND OTHER CARBONACEOUS CHONDRITES , 1977 .

[19]  R. J. Floran Silicate petrography, classification, and origin of the mesosiderites: Review and new observations. , 1978 .

[20]  Implications of shock effects in iron meteorites , 1967 .

[21]  Susan Werner Kieffer,et al.  Thermodynamics and lattice vibrations of minerals: 5. Applications to phase equilibria, isotopic fractionation, and high‐pressure thermodynamic properties , 1982 .

[22]  H. O’Neill The origin of the moon and the early history of the earth—A chemical model. Part 1: The moon , 1991 .

[23]  R. Clayton,et al.  The Leoville (CV3) accretionary breccia , 1985 .

[24]  M. Thiemens,et al.  The Mass-Independent Fractionation of Oxygen: A Novel Isotope Effect and Its Possible Cosmochemical Implications , 1983, Science.

[25]  R. Clayton,et al.  Potassium isotope cosmochemistry: Genetic implications of volatile element depletion , 1995 .

[26]  E. Olsen,et al.  Phosphates in iron and pallasite meteorites , 1966 .

[27]  D. Mittlefehldt,et al.  Partial Melting of the Aliende (CV3) Meteorite: Implications for Origins of Basaltic Meteorites , 1991, Science.

[28]  W. Hartmann,et al.  Origin of the Moon , 1986 .

[29]  R. Clayton,et al.  Water in SNC meteorites: evidence for a martian hydrosphere. , 1992, Science.

[30]  L. Adami,et al.  Oxygen isotope analyses of selected Apollo 11 materials , 1970 .

[31]  R. Clayton,et al.  Oxygen isotope fractionation in Apollo 12 rocks and soils , 1971 .

[32]  J. M. Short,et al.  The iron meteorites, their thermal history and parent bodies. , 1967 .

[33]  R. Clayton,et al.  Oxygen Isotope Fractionation between Minerals and an Estimate of the Temperature of Formation , 1970, Science.

[34]  Robert N. Clayton Oxygen Isotopes in Meteorites , 1993 .

[35]  Alfred Edward Ringwood,et al.  Origin of the Earth and Moon , 1979 .

[36]  A. Davis,et al.  Mesosiderite Clasts with the Most Extreme Positive Europium Anomalies Among Solar System Rocks , 1992, Science.

[37]  V. Buchwald Handbook of iron meteorites , 1975 .

[38]  K. Marti,et al.  Discovery of an Unmelted H-Chondrite Inclusion in an Iron Meteorite , 1995, Science.

[39]  R. W. Bild,et al.  Mesosiderites. I - Compositions of their metallic portions and possible relationship to other metal-rich meteorite groups , 1974 .

[40]  R. Clayton,et al.  A Component of Primitive Nuclear Composition in Carbonaceous Meteorites , 1973, Science.

[41]  K. Keil,et al.  Igneous history of the aubrite parent asteroid - Evidence from the Norton County enstatite achondrite , 1988 .

[42]  A. V. Murali,et al.  Genesis of the Angra dos Reis and other achondritic meteorites , 1976 .

[43]  G. Wetherill,et al.  Provenance of the terrestrial planets. , 1994, Geochimica et cosmochimica acta.

[44]  J. Wasson,et al.  Chemical classification of iron meteorites—X. Multielement studies of 43 irons, resolution of group IIIE from IIIAB, and evaluation of Cu as a taxonomic parameter , 1984 .

[45]  G. T. Prior On the Genetic Relationship and Classification of Meteorites1 , 1916 .

[46]  G. Consolmagno,et al.  Composition and evolution of the eucrite parent body - Evidence from rare earth elements. [extraterrestrial basaltic melts] , 1977 .

[47]  R. Clayton,et al.  The Divnoe Meteorite: Petrology, Chemistry, Oxygen Isotopes and Origin , 1994 .

[48]  K. Turekian,et al.  Inhomogeneous accumulation of the earth from the primitive solar nebula. , 1969 .

[49]  F. C. Leonard On the Classification of Meteorites , 1944 .

[50]  R. Binzel,et al.  Chips off of Asteroid 4 Vesta: Evidence for the Parent Body of Basaltic Achondrite Meteorites , 1993, Science.

[51]  E. Scott,et al.  Chemical classification of iron meteorites. VIII - Groups IC, IIE, IIIF and 97 other irons , 1976 .

[52]  H. Wänke,et al.  Chemical composition and accretion history of terrestrial planets , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[53]  R. Clayton,et al.  The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis , 1963 .

[54]  A. D. THE TRACE-ELEMENT COMPOSITION OF EAGLES NEST AND ITS RELATIONSHIP TO OTHER ULTRAMAFIC ACHONDRITES - , 2022 .

[55]  W. Jianmin,et al.  A nonmagmatic origin of group-IIE iron meteorites , 1986 .

[56]  W. Hartmann,et al.  Asteroids - The big picture , 1989 .

[57]  S. Niemeyer I-Xe and 40Ar-39Ar dating of silicate from Weekeroo Station and Netschaëvo IIE iron meteorites , 1980 .

[58]  S. Galer,et al.  Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis , 1992 .

[59]  H. Newsom Molybdenum in eucrites: evidence for a metal core in the eucrite parent body. , 1985 .

[60]  R. Clayton High temperature isotope effects in the early solar system , 1986 .

[61]  E. Scott Geochemical relationships between some pallasites and iron meteorites , 1977, Mineralogical Magazine.

[62]  E. Anders,et al.  Bulk compositions of the moon and earth, estimated from meteorites , 1974 .

[63]  K. Lodders,et al.  Trace elements in mineral separates of the Peña Blanca Spring aubrite: Implications for the evolution of the aubrite parent body , 1993 .

[64]  N. Svensson Lumparn Bay: A Meteorite Impact Crater in the Aland Archipelago, Southwest Finland , 1993 .

[65]  R. H. Brown,et al.  Voyager 2 in the Uranian System: Imaging Science Results , 1986, Science.

[66]  M. Drake,et al.  Geochemical evolution of the eucrite parent body - Possible nature and evolution of asteroid 4 Vesta , 1979 .

[67]  R. Clayton,et al.  Oxygen isotopic compositions of several Antarctic meteorites , 1987 .

[68]  G. Dreibus,et al.  Lithium as a correlated element, its condensation behaviour, and its use to estimate the bulk composition of the moon and the eucrite parent body , 1976 .

[69]  C. Wai,et al.  Origin of Iron Meteorite Groups IAB and IIICD , 1980 .

[70]  M. Duke,et al.  Petrology of eucrites, howardites and mesosiderites☆ , 1967 .

[71]  J. Goldstein,et al.  A dendritic solidification model to explain Ge-Ni variations in iron meteorite chemical groups , 1982 .

[72]  K. Keil,et al.  Mineralogy and petrology of silicate inclusions in iron meteorites , 1970 .

[73]  R. Clayton,et al.  Nitrogen isotopic compositions of iron meteorites , 1993 .

[74]  Konrad Mauersberger,et al.  Measurement of isotopic abundances in collected stratospheric ozone samples , 1990 .

[75]  H. Craig,et al.  The composition of the stone meteorites and the origin of the meteorites , 1953 .

[76]  R. Clayton,et al.  Nitrogen abundances and isotopic compositions in stony meteorites , 1978 .

[77]  David W. Mittlefehdt The composition of mesosiderite olivine clasts and implications for the origin of pallasites , 1980 .

[78]  S. Epstein,et al.  The implication of the oxygen isotope records in coexisting cherts and phosphates , 1986 .

[79]  R. Clayton,et al.  Genetic relations between the moon and meteorites , 1975 .

[80]  R. Clayton,et al.  A classification of meteorites based on oxygen isotopes , 1976 .

[81]  R. Clayton,et al.  Bocaiuva - A silicate-inclusion bearing iron meteorite related to the Eagle-Station pallasites , 1985 .

[82]  S. Epstein,et al.  O18/O16 ratios of Apollo 11 lunar rocks and minerals , 1970 .

[83]  R. Clayton,et al.  Oxygen isotopic compositions of enstatite chondrites and aubrites , 1984 .

[84]  E. Stolper Experimental petrology of eucritic meteorites , 1977 .

[85]  Eric A. Jerde,et al.  Diverse Eucritic Pebbles in the Vaca Muerta Mesosiderite: Una Manada de las Vacas Muertas , 1987 .

[86]  D. Mittlefehldt,et al.  Evolutionary history of the mesosiderite asteroid - A chronologic and petrologic synthesis , 1993 .

[87]  R. Clayton,et al.  Properties of the Guin ungrouped iron meteorite: the origin of Guin and of group-IIE irons , 1986 .

[88]  H. Haack,et al.  Metallographic Cooling Rates Of Iab Iron-Meteorites , 1995 .

[89]  E. Scott Origin of iron meteorites. , 1979 .

[90]  T. Watters,et al.  Aubrites - Their origin and relationship to enstatite chondrites , 1979 .

[91]  E. Stolper Petrogenesis of eucrite, howardite and diogenite meteorites , 1975, Nature.

[92]  H. Melosh,et al.  When worlds collide - Jetted vapor plumes and the moon's origin , 1985 .

[93]  S. Taylor,et al.  Geochemical implications of the formation of the Moon by a single giant impact , 1989, Nature.

[94]  K. Keil,et al.  Consequences of explosive eruptions on small Solar System bodies: the case of the missing basalts on the aubrite parent body , 1991 .

[95]  M. Thiemens,et al.  A non‐mass‐dependent isotope effect in the production of ozone from molecular oxygen , 1983 .

[96]  G. T. Prior The Classification of Meteorites1 , 1920 .

[97]  R. Clayton,et al.  Mbosi: An anomalous iron with unique silicate inclusions , 1996 .

[98]  G. Wetherill Accumulation of the terrestrial planets and implications concerning lunar origin , 1986 .

[99]  R. Clayton,et al.  Pyroxene Pallasites: A New Pallasite Grouplet , 1995 .

[100]  H. Newsom,et al.  The metal content of the eucrite parent body: constraints from the partitioning behavior of tungsten , 1982 .

[101]  A. Kracher The evolution of partially differentiated planetesimals: Evidence from iron meteorite groups IAB and IIICD , 1985 .

[102]  D. Mittlefehldt,et al.  Mesosiderites and howardites: igneous formation and possible genetic relationships , 1979 .

[103]  H. Chiba Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: Application to geothermometry : , , and (1989) Goechim. Cosmochim. Acta 53 , 2985-2995 , 1991 .

[104]  G. Wasserburg,et al.  Evidence for the formation of an iron meteorite at 3.8 × 109 years , 1967 .

[105]  R. Clayton,et al.  Formation of ureilites by nebular processes , 1988 .

[106]  David J. Stevenson,et al.  Origin of the Moon-The Collision Hypothesis , 1987 .

[107]  R. Clayton,et al.  Dark inclusions in Allende, Leoville, and Vigarano - Evidence for nebular oxidation of CV3 constituents , 1990 .

[108]  P. Ramdohr,et al.  "Peckelsheim" a new bronzite achondrite from Westfalia, Germany. , 1969 .

[109]  K. Keil,et al.  The nature and origin of ureilites , 1980 .

[110]  H. Haack,et al.  Genesis of the IIICD iron meteorites - Evidence from silicate-bearing inclusions , 1993 .

[111]  J. Goldstein,et al.  The Tucson meteorite , 1974 .

[112]  R. Clayton,et al.  Watson: A new link in the IIE iron chain , 1991 .

[113]  E. Scott,et al.  Classification and properties of iron meteorites , 1975 .

[114]  R. Clayton,et al.  Oxygen isotopic composition of aubrites and some unique meteorites. , 1980 .

[115]  V. Buchwald,et al.  The Chemical Classification of Iron Meteorites. VI. A Reinvestigation of Irons with Ge Concentration Lower than 1 ppm. , 1972 .

[116]  J. Wasson Ni, Ga, Ge and Ir in the metal of iron- meteorites-with-silicate-inclusions , 1970 .

[117]  R. T. Dodd Meteorites. A petrologic-chemical synthesis. , 1981 .

[118]  R. Clayton,et al.  Oxygen isotope relationships in iron meteorites , 1983 .

[119]  H. Mori,et al.  The diogenite‐eucrite links and the crystallization history of a crust of their parent body , 1985 .

[120]  R. Clayton,et al.  Brachinites: A New Primitive Achondrite Group , 1992 .

[121]  J. Morgan,et al.  A “chondritic” eucrite parent body: inference from trace elements , 1977 .

[122]  E. Jarosewich,et al.  Chondrules: First Occurrence in an Iron Meteorite , 1971, Science.

[123]  D. Lowry,et al.  Oxygen isotope composition of mantle peridotite , 1994 .

[124]  R. Clayton,et al.  Oxygen isotope studies of ordinary chondrites , 1991 .