Structure-based design, synthesis, and biological evaluation of conformationally restricted novel 2-alkylthio-6-[1-(2,6-difluorophenyl)alkyl]-3,4-dihydro-5-alkylpyrimidin-4(3H)-ones as non-nucleoside inhibitors of HIV-1 reverse transcriptase.

5-Alkyl-2-(alkylthio)-6-(2,6-difluorobenzyl)-3,4-dihydropyrimidin-4(3H)-ones (S-DABOs, 2) have been recently described as a new class of human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) active at nanomolar concentrations (Mai, A. et al. J. Med. Chem. 1999, 42, 619-627). In pursuing our lead optimization efforts, we designed novel conformationally restricted S-DABOs, 3, featuring a methyl at the benzylic carbon (Y = Me) and at the pyrimidine 5-position (R = Me). Conformational analyses and docking simulations suggested that the presence of both methyls would significantly reduce conformational flexibility without compromising, in the R enantiomers, the capability of fitting into the RT non-nucleoside binding pocket. To develop structure-activity relationships, we prepared several congeners of type 3 belonging to the thymine (R = Me) and uracil (R = H) series, featuring various 2-alkylthio side chains (X = Me, i-Pr, n-Bu, i-Bu, s-Bu, c-pentyl, and c-hexyl) and aryl moieties different from the 2,6-difluorophenyl (Ar = phenyl, 2,6-dichlorophenyl, 1-naphthyl). Moreover, alpha-ethyl derivatives (Y = Et) were included in the synthetic project in addition to alpha-methyl derivatives (Y = Me). All of the new compounds were evaluated for their cytotoxicity and anti-HIV-1 activity in MT-4 cells, and some of them were assayed against highly purified recombinant wild-type HIV-1 RT using homopolymeric template primers. The results were expressed as CC(50) (cytotoxicity), EC(50) (anti-HIV-1 activity), SI (selectivity, given by the CC(50)/EC(50) ratio), and IC(50) (RT inhibitory activity) values. In the 2,6-difluorobenzylthymine (R = Me) series, methylation of the benzylic carbon improved anti-HIV-1 and RT inhibitory activities together with selectivity. Compound 3w (Ar = 2,6-F(2)-Ph, R = Y = Me, X = c-pentyl) turned out the most potent and selective among the S-DABOs reported to date (CC(50) > 200 microM, EC(50) = 6 nM, IC(50) = 5 nM, and SI > 33 333). Assays performed on the pure enantiomer (+)-3w, much more active than (-)-3w, yielded the following results: CC(50) > 200 microM, EC(50) = 2 nM, IC(50) = 8 nM, and SI > 100 000, under conditions wherein MKC-442 was less active and selective (CC(50) > 200 microM, EC(50) = 30 nM, IC(50) = 40 nM, SI > 6666). The 2,6-difluorophenylethylthymines (R = Me) were generally endowed with higher potency compared with the uracil counterparts (R = H). In the 2,6-difluorophenyl series the best and the least performant 2-alkylthio side chains were the 2-c-pentylthio and the 2-methylthio, respectively. When the methyl at the benzylic carbon was replaced by an ethyl, activity was retained or decreased slightly, thus suggesting that the dimensions of the cavity within the RT hosting this substituent would not be compatible with groups larger than ethyl. Aryl moieties different from the 2,6-difluorophenyl (phenyl, 1-naphthyl, 2,6-dichlorophenyl) were generally detrimental to activity, consistent with a favorable electronic effect exerted by the 2,6-fluorines on a putative charge-transfer interaction between the aromatic moieties of the inhibitor and Tyr188.

[1]  Erik De Clercq,et al.  Toward improved anti-HIV chemotherapy: therapeutic strategies for intervention with HIV infections. , 1995 .

[2]  A. Mai,et al.  Chiral resolution and molecular modeling investigation of rac-2-cyclopentylthio-6-[1-(2,6-difluorophenyl)ethyl]-3,4-dihydro-5-methylpyrimidin-4(3H)-one (MC-1047), a potent anti-HIV-1 reverse transcriptase agent of the DABO class. , 2001, Chirality.

[3]  M. Summers,et al.  Structural biology of HIV. , 1999, Journal of molecular biology.

[4]  D. Richman Resistance of clinical isolates of human immunodeficiency virus to antiretroviral agents , 1993, Antimicrobial Agents and Chemotherapy.

[5]  Richard T. Walker,et al.  Complexes of HIV-1 reverse transcriptase with inhibitors of the HEPT series reveal conformational changes relevant to the design of potent non-nucleoside inhibitors. , 1996, Journal of medicinal chemistry.

[6]  A. Mai,et al.  Synthesis and Antiviral Activity of New 3,4-Dihydro-2-Alkoxy-6-Benzyl-4-Oxopyrimidines (DABOs), Specific Inhibitors of Human Immunodeficiency Virus Type 1 , 1995 .

[7]  M A Fischl,et al.  The efficacy of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex. A double-blind, placebo-controlled trial. , 1987, The New England journal of medicine.

[8]  A. D. Clark,et al.  Crystal structures of 8-Cl and 9-Cl TIBO complexed with wild-type HIV-1 RT and 8-Cl TIBO complexed with the Tyr181Cys HIV-1 RT drug-resistant mutant. , 1996, Journal of molecular biology.

[9]  D W Barry,et al.  3'-Azido-3'-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[10]  T. Terasaki,et al.  Restricted transport of 3'-azido-3'-deoxythymidine and dideoxynucleosides through the blood-brain barrier. , 1988, The Journal of infectious diseases.

[11]  W. L. Jorgensen,et al.  Binding affinities for sulfonamide inhibitors with human thrombin using Monte Carlo simulations with a linear response method. , 1997, Journal of medicinal chemistry.

[12]  R T Walker,et al.  Highly specific inhibition of human immunodeficiency virus type 1 by a novel 6-substituted acyclouridine derivative. , 1989, Biochemical and biophysical research communications.

[13]  A. D. Clark,et al.  Structure of HIV-1 reverse transcriptase in a complex with the non-nucleoside inhibitor α-APA R 95845 at 2.8 å resolution , 1995 .

[14]  Peter A. Kollman,et al.  AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules , 1995 .

[15]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[16]  E. Clercq Targets and strategies for the antiviral chemotherapy of AIDS , 1990 .

[17]  J Desmyter,et al.  Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. , 1988, Journal of virological methods.

[18]  T. Steitz,et al.  Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[19]  D. Stuart,et al.  The structure of HIV-1 reverse transcriptase complexed with 9-chloro-TIBO: lessons for inhibitor design. , 1995, Structure.

[20]  E. Clercq,et al.  Antiviral therapy for human immunodeficiency virus infections. , 1995 .

[21]  L. Resnick,et al.  Nonnucleoside reverse transcriptase inhibitors that potently and specifically block human immunodeficiency virus type 1 replication. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[22]  M. Zerner,et al.  A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries , 1985 .

[23]  Erik De Clercq,et al.  The role of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection , 1998 .

[24]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[25]  A. Mai,et al.  Dihydro(alkylthio)(naphthylmethyl)oxopyrimidines: novel non-nucleoside reverse transcriptase inhibitors of the S-DABO series. , 1997, Journal of medicinal chemistry.

[26]  A. Mai,et al.  Characterization of the anti-HIV-1 activity of 3,4-dihydro-2-alkoxy-6-benzyl-4-oxopyrimidines (DABOs), new non-nucleoside reverse transcriptase inhibitors. , 1994, The new microbiologica.

[27]  Oberg,et al.  Urea-PETT compounds as a new class of HIV-1 reverse transcriptase inhibitors. 3. Synthesis and further structure-activity relationship studies of PETT analogues , 1999, Journal of medicinal chemistry.

[28]  K. Weinhold,et al.  3'-Azido-3'-deoxythymidine triphosphate as an inhibitor and substrate of purified human immunodeficiency virus reverse transcriptase , 1987, Antimicrobial Agents and Chemotherapy.

[29]  J. Adams,et al.  Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor. , 1990, Science.

[30]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[31]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[32]  D. Stuart,et al.  High resolution structures of HIV-1 RT from four RT-inhibitor complexes. , 1996 .

[33]  A. Mai,et al.  3,4-Dihydro-2-Alkoxy-6-Benzyl-4-Oxopyrimidines (DABOs): A New Class of Specific Inhibitors of Human Immunodeficiency Virus Type 1 , 1993 .

[34]  Erik De Clercq,et al.  Potent and selective inhibition of HIV-1 replication in vitro by a novel series of TIBO derivatives , 1990, Nature.

[35]  D I Stuart,et al.  Unique features in the structure of the complex between HIV-1 reverse transcriptase and the bis(heteroaryl)piperazine (BHAP) U-90152 explain resistance mutations for this nonnucleoside inhibitor. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A. Skalka,et al.  The retroviral enzymes. , 1994, Annual review of biochemistry.